Brunn-Minkowski inequality

from Wikipedia, the free encyclopedia

The Brunn-Minkowski inequality or the Brunn and Minkowski theorem , named after the two mathematicians Hermann Brunn and Hermann Minkowski , is a classic theorem in the mathematical subfield of convex geometry . The inequality sets the Lebesgue measure of the Minkowski sum of two compact subsets of the n-dimensional Euclidean space in relation to the Lebesgue measure of these two subsets. It has numerous applications and in particular has the isoperimetric inequality .

Representation of the inequality

In summary, the inequality states the following:

(1) One forms with the Lebesgue measure for two non-empty compact subsets
the set of all of two elements of or formable sums ,
so applies to the resulting Minkowski sum
the inequality
 .
(2) Are beyond and even convex bodies ,
so for every real number with the inequality applies
 .

Explanations and Notes

(a) For two non-empty compact subsets , the Minkowski sum is always a compact subset of the and, in particular, Lebesgue measurable .

(b) For a non-empty compact subset and any real number , the set of the elements of multiplied by is also always a compact subset of and, in particular, Lebesgue measurable.

(c) If one disregards the compactness of the two subsets in (1) and only assumes that both may be Lebesgue measurable, it is generally not even guaranteed that their Minkowski sum represents a Lebesgue measurable subset of the . However, if the external Lebesgue measure is used instead of the Lebesgue measure , the above inequality (1) applies accordingly. Even for any non-empty subsets , the inequality always holds  .

literature

  • Yu. D. Burago - VA Zalgaller : Geometric Inequalities (=  The basic teachings of the mathematical sciences in individual representations . Volume 285 ). Springer Verlag, Berlin ( inter alia ) 1988, ISBN 3-540-13615-0 ( MR0936419 ).
  • Herbert Federer : Geometric Measure Theory (=  The basic teachings of the mathematical sciences in individual representations with special consideration of the areas of application . Volume 153 ). Springer-Verlag, Berlin / Heidelberg / New York 1969 ( MR0257325 ).
  • RJ Gardner: The Brunn-Minkowski inequality . In: Bull. Amer. Math. Soc. (NS) . tape 39 , 2002, p. 355-405 ( ams.org ). MR1898210
  • H. Hadwiger : Lectures on content, surface and isoperimetry (=  the basic teachings of the mathematical sciences in individual presentations with special consideration of the areas of application . Volume 93 ). Springer-Verlag, Berlin ( inter alia) 1957 ( MR0102775 ).
  • Kurt Leichtweiß : Convex quantities (=  university text ). Springer-Verlag, Berlin / Heidelberg / New York 1980, ISBN 3-540-09071-1 .
  • Boris Makarov, Anatoly Podkorytov: Real Analysis: . Measures, Integrals and Applications (=  Universitext ). Springer-Verlag, London (inter alia) 2013, ISBN 978-1-4471-5121-0 ( MR3089088 ).
  • Vitali D. Milman , Gideon Schechtman: Asymptotic Theory of Finite Dimensional Normed Spaces (=  Lecture Notes in Mathematics . Volume 1200 ). Springer-Verlag, Berlin ( inter alia ) 1986, ISBN 3-540-16769-2 ( MR0856576 ).
  • Frederick A. Valentine: Convex sets (=  BI university paperbacks . Volume 402 / 402a). Bibliographisches Institut , Mannheim 1968 ( MR0226495 ).

Individual evidence

  1. Yu. D. Burago, VA Zalgaller: Geometric Inequalities. 1988, p. 136 ff, p. 146
  2. ^ H. Hadwiger: Lectures on content, surface and isoperimetry. 1957, p. 187 ff
  3. Kurt Leichtweiß: Convex sets. 1980, p. 248 ff
  4. Vitali D. Milman, Gideon Schechtman: Asymptotic Theory of Finite Dimensional Normed Spaces. 1986, p. 134 ff, p. 146
  5. Boris Makarov, Anatolij Podkorytov: Real Analysis:… 2013, p. 87 ff
  6. Frederick A. Valentine: Convex sets. 1968, pp. 196-197
  7. ^ Herbert Federer: Geometric Measure Theory. 1969, p. 277 ff