In algebraic geometry  , the classical Bézout theorem describes  the number of points of intersection of plane algebraic curves  . It was formulated and proven by Étienne Bézout  in the 18th century (within the framework of the more lax claims of the time).
statement Let be an algebraically closed  body  and let and two projective plane curves in two-dimensional  projective space  without common components. Then:
  
    
      
        k 
       
     
    {\ displaystyle k} 
   
 
  
    
      
        F. 
       
     
    {\ displaystyle F} 
   
 
  
    
      
        G 
       
     
    {\ displaystyle G} 
   
 
  
    
      
        
          
            P 
           
          
            2 
           
         
        ( 
        k 
        ) 
       
     
    {\ displaystyle \ mathbb {P} ^ {2} (k)} 
   
  
  
    
      
        
          ∑ 
          
            P 
            ∈ 
            
              
                P 
               
              
                2 
               
             
            ( 
            k 
            ) 
           
         
        I. 
        ( 
        P 
        , 
        F. 
        ∩ 
        G 
        ) 
        = 
        deg 
         
        F. 
        ⋅ 
        deg 
         
        G 
        , 
       
     
    {\ displaystyle \ sum _ {P \ in \ mathbb {P} ^ {2} (k)} I (P, F \ cap G) = \ deg F \ cdot \ deg G,} 
   
 where denotes the number of cuts  .
  
    
      
        I. 
        ( 
        P 
        , 
        F. 
        ∩ 
        G 
        ) 
       
     
    {\ displaystyle I (P, F \ cap G)} 
   
  
Inferences 
Two projective plane curves and always intersect in at least one point and at most in different points.
  
    
      
        F. 
       
     
    {\ displaystyle F} 
   
 
  
    
      
        G 
       
     
    {\ displaystyle G} 
   
 
  
    
      
        deg 
         
        F. 
        ⋅ 
        deg 
         
        G 
       
     
    {\ displaystyle \ deg F \ cdot \ deg G} 
   
  
The inequality holds for affine plane curves and without common components .
  
    
      
        F. 
       
     
    {\ displaystyle F} 
   
 
  
    
      
        G 
       
     
    {\ displaystyle G} 
   
 
  
    
      
        
          ∑ 
          
            P 
            ∈ 
            
              k 
              
                2 
               
             
           
         
        I. 
        ( 
        P 
        , 
        F. 
        ∩ 
        G 
        ) 
        ≤ 
        deg 
         
        F. 
        ⋅ 
        deg 
         
        G 
       
     
    {\ displaystyle \ sum _ {P \ in k ^ {2}} I (P, F \ cap G) \ leq \ deg F \ cdot \ deg G} 
   
  
 
generalization A generalization for algebraic varieties  is as follows:
Be , algebraic varieties of degree or in -dimensional projective space . Furthermore, be a variety of dimension .
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        B. 
       
     
    {\ displaystyle B} 
   
 
  
    
      
        deg 
         
        A. 
        = 
        a 
       
     
    {\ displaystyle \ deg A = a} 
   
 
  
    
      
        deg 
         
        B. 
        = 
        b 
       
     
    {\ displaystyle \ deg B = b} 
   
 
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
 
  
    
      
        
          
            P 
           
          
            n 
           
         
       
     
    {\ displaystyle \ mathbb {P} ^ {n}} 
   
 
  
    
      
        A. 
        ∩ 
        B. 
       
     
    {\ displaystyle A \ cap B} 
   
 
  
    
      
        dim 
         
        ( 
        A. 
        ∩ 
        B. 
        ) 
        = 
        dim 
         
        A. 
        + 
        dim 
         
        B. 
        - 
        n 
       
     
    {\ displaystyle \ dim (A \ cap B) = \ dim A + \ dim Bn} 
   
 
Then is .
  
    
      
        deg 
         
        A. 
        ∩ 
        B. 
        = 
        a 
        b 
       
     
    {\ displaystyle \ deg A \ cap B = from} 
   
 
Web links literature Klaus Hulek: Elementare Algebraische Geometrie  , 1st edition, 2000, ISBN 978-3-528-03156-5  , pp. 145-146.
 
<img src="https://de.wikipedia.org//de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">