Dies ist ein als lesenswert ausgezeichneter Artikel.

Dampflokomotive

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 7. August 2007 um 00:46 Uhr durch Bodenseemann (Diskussion | Beiträge) (→‎Weblinks: + Lesenswert). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen

Eine Dampflokomotive (kurz Dampflok) ist ein Zugfahrzeug, das mit Dampf angetrieben wird. Der Ausdruck bezieht sich normalerweise auf ein Eisenbahnfahrzeug, kann sich aber auch auf ein Straßenfahrzeug beziehen, wie z. B. eine Zugmaschine oder eine Dampfwalze.

Eine preußische P8 - Baujahr 1918
Heißdampf-Schnellzuglokomotive der Kgl. Preußischen Staatsbahnen
Heißdampf-Schnellzuglokomotive der Kgl. Preußischen Staatsbahnen Innenansicht

Dampflokomotiven dominierten die Schienenfahrt zwischen der Mitte des 19. Jahrhunderts und der Mitte des 20. Jahrhunderts, wonach sie durch Diesellokomotiven und Elektrolokomotiven abgelöst wurden.

Angetrieben wird die Dampflokomotive meist durch eine Kolbendampfmaschine, eine Wärmekraftmaschine, die die Druckenergie des Arbeitsmediums Wasserdampf in mechanische Bewegungsenergie umwandelt.

Mit ihrem Eintritt in die Wirtschaftswelt vor der Mitte des 19. Jahrhunderts war eine rasante Entwicklung der Transporttechnik, des nationalen und dann internationalen Handels mit Gütern aller Kategorien verbunden.

Die Ablösung der Dampflokomotive begann Anfang des 20. Jahrhundert, als elektrische Antriebsmaschinen entwickelt wurden. Dampflokomotiven wurden aufgrund ihres schlechten Wirkungsgrades, des hohen Bedienungs-, Wartungs- und Reparaturaufwandes sowie ihrer Umweltschädlichkeit und höheren Betriebsgefahr in der zweiten Hälfte des 20. Jahrhunderts in den meisten Industriestaaten zugunsten der Traktion mit Dieselfahrzeugen und Elektrolokomotiven aufgegeben und werden seitdem im wesentlichen nicht mehr neu gebaut.

In modernen Industriestaaten genießen die verbliebenen, nicht verschrotteten Dampflokomotiven oftmals einen Ehrenplatz als Ausdruck des Interesses an der Technikhistorie und zur Freizeitgestaltung von Technik-Interessierten.

In einigen Ländern jedoch gehörten Dampflokomotiven aufgrund ihrer lokal niedrigen Herstellungs-, Energie- und Arbeitskosten noch bis gegen Ende des 20. Jahrhunderts zum Alltagsbild des Transportwesens, so im südlichen Afrika und in China. Vereinzelt werden sie – wie in Angola und Zimbabwe – noch heute von Staatsbahnen eingesetzt.

Die Technik der Dampflokomotive

Dampflokomotiven sind in einer Vielzahl verschiedener Typen und Varianten gebaut worden. Nachfolgend werden die am weitesten verbreiteten Ausführungen dargestellt. Davon abweichende Ausführungen sind im Artikel Dampflokomotive (Bauart) zu finden.

Konstruktiver Gesamtaufbau

Datei:Dampflok Skizze kl.jpg
Baugruppen einer amerikanischen Pacific mit Schlepptender und der Achsfolge 2'C1'

Die gebräuchlichste Bauform besteht aus einem Kessel, einer Dampfmaschine oder einer Dampfturbine, einem Fahrgestell mit den Rädern, einem Führerhaus zur Bedienung sowie Einrichtungen zum Bevorraten der Betriebsstoffe Kohle oder Öl sowie Wasser. Auf einem stählernen Rahmen sind der Dampfkessel, die daran angebaute Feuerbüchse, die Kolbendampfmaschine sowie auch das Führerhaus montiert.

Dieser Rahmen wird von den Treibrädern, den über Kuppelstangen verbundenen Kuppelrädern und oft zusätzlichen antriebslosen Laufrädern getragen. Die Kolbendampfmaschine besteht in der Regel aus zwei bis vier Zylindern, die seitlich außen am oder innerhalb des Rahmens angebracht sind. Die hin- und hergehenden Bewegungen der Kolbenstangen werden mittels eines Übertragungsgestänges auf die Kurbelzapfen der Räder übertragen und diese somit in Drehung versetzt.

Dampferzeugung und Energieumwandlung

Befeuerung und Wassererhitzung

Dampflokomotiven beziehen ihre Primärenergie aus der Verbrennung der mitgeführten Brennstoffe. Dies sind im allgemeinen Kohle oder Schweröl, aber auch Holz, Kohlenstaub, Torf und bei neueren Modellen auch Mineralöl kommen zum Einsatz. Der damit beheizte Kessel erzeugt aus Wasser den Dampf für die Dampfmaschine. Die meisten Dampfloks haben eine Rostfeuerung mit flachem Feuerbett. Bei Verwendung von Kohlenstaub, Schweröl oder Mineralöl wird ein Brenner verwendet. Schweröl wird von speziellen Schwerölbrennern vorgeheizt und anschließend mit einem Dampfstrahl zerstäubt. Als während des Zweiten Weltkrieges die Kohle knapp war, wurden in der Schweiz einige wenige Rangierlokomotiven mit einer elektrischen Kesselheizung nachgerüstet.

Der Dampf wird gebildet, indem zum einen die vollständig von einem Wassermantel umgebene Feuerbüchse, die sogenannte Strahlungsheizfläche, vom Feuer bestrahlt wird. Zum anderen durchströmen die Rauchgase durch Rohre den gesamten Kessel bis zur vorderen Rauchkammer und geben dabei die Wärme an die Rohrwandungen ab, die Berührungsheizfläche. Je nach Größe der Lok sind bis zu 50 Rauchrohre eingezogen. Bei diesem Konstruktionsprinzip handelt es sich um den sogenannten Stephensonschen Röhrenkessel. Zusätzlich zu den Rauchrohren ist der Kessel von etwa 50 - 100 Heizrohren durchzogen. Die Rauchrohre haben einen größeren Durchmesser. Ihre Aufgabe ist es, durch Luftzug das Feuer in der Feuerbüchse am Brennen zu halten. Die im Durchmesser kleineren Heizrohre haben die Aufgabe, die heißen Heizgase möglichst lange im Kessel zu halten, um so möglichst viel Energie an das umgebende Wasser abgeben zu können. Sonderkonstruktionen hatten entweder eine Verbrennungskammer, oder der Kessel war anders gebaut, z.B. als Flammrohrkessel. Diese Versionen haben sich aber nicht durchsetzen können.

Die Frischluftzufuhr für die Verbrennung erfolgt über Luftklappen am Aschkasten. Für eine einwandfreie Feueranfachung ist das schon von Trevithick entwickelte Blasrohr unentbehrlich. Dieses ist am Boden der Rauchkammer angeordnet. Der Auspuffabdampf wird durch eine enge Düse zum Kamin geleitet. Beim Austritt aus dem Schornstein entsteht ein Unterdruck, der die Rauchgase aus der Feuerbüchse durch die Rohre zieht und das Feuer immer weiter anfacht. Da der Abdampf aus der Dampfmaschine nur während der Fahrt zur Verfügung steht, ist für die Feueranfachung bei Stillstand noch ein Hilfsbläser eingebaut, der aus einem Rohrring mit Blaslöchern um den Blasrohrkopf besteht und direkt mit Frischdampf aus dem Kessel versorgt wird. Vor der Einführung des Hilfsbläsers wurden die Dampflokomotiven bei längeren Stillstandszeiten teilweise abgekuppelt und auf dem Parallelgleis hin- und hergefahren, um das Feuer zu entfachen und den erwünschten Kesseldruck zu erreichen. Zum Anheizen einer kalt abgestellten Dampflok kann ein externes Sauggebläse verwendet werden, wenn der Vorgang beschleunigt werden soll.

Dampfüberhitzung und Druckerzeugung

Anordnung des Überhitzers im Kessel

Das durch die Hitze verdampfende Wasser sammelt sich im Dampfraum im oberen Kesselbereich und dem zuoberst aufgebauten Dampfdom. Der so entstandene Satt- oder Nassdampf mit einer vom Kesselüberdruck abhängigen Temperatur von 170 bis 200 Grad Celsius ist eine Mischung aus Dampf und feinsten Wassertropfen. Siehe auch: Dampfkessel.

In modernen Dampflokomotiven wird der Dampf vom Dampfdom in einen Überhitzer weitergeleitet. Dieser besteht aus zahlreichen U-förmig gebogenen Rohren, die in früherer Bauart in einem Kasten in der Rauchkammer standen, später aber sämtlich in die Rauchrohre des Kessels hineinragten (Rauchkammerüberhitzer oder Rauchrohrüberhitzer). Durch den Kontakt mit den Verbrennungsgasen wird der Dampf in den Überhitzerrohren auf fast 400 Grad Celsius erwärmt, so dass auch die letzten feinen Wassertröpfchen verdampfen. Das Ergebnis heißt Heißdampf. Ohne weitere Druckerhöhung enthält damit der Dampf mehr Energie, zudem geht auf dem Wege zu den Zylindern weniger Wärme durch Kondensation in den Rohrleitungen verloren. Die neueren Dampflokomotiven arbeiten mit einem Druck zwischen 15 und 20 bar. Der Druck wird begrenzt durch eine Sicherheitsarmatur, die bei Überschreiten des Maximaldruckes den zu hohen Dampfdruck ablässt.

Kolbendampfmaschine der Dampflok

Zylinder und Kolben

Schieber- und Arbeits-Zylinder, aufgeschnitten, hier ein Funktionsmodell mit den Originalteilen einer Schnellzuglokomotive des deutschen Types 01.10

Bei Lokomotiven mit Nassdampfregler passiert der im Dampfdom entnommene Dampf zunächst das Reglerventil und gelangt von dort in die Nassdampfkammer des Dampfsammelkastens in der Rauchkammer. Hier wird er in die Überhitzerrohre geleitet und dort auf Temperaturen von etwa 370 Grad Celsius überhitzt. Der überhitzte Dampf gelangt in die Heißdampfkammer des Dampfsammelkastens und von dort in das Haupteinströmrohr der Dampfmaschine.

Wird anstelle des Nassdampfreglers ein Heißdampfregler verwendet, so gelangt der überhitzte Dampf von der Heißdampfkammer des Dampfsammelkastens über das Heißdampfreglerventil zum Haupteinströmrohr der Dampfmaschine. In den Zylindern der Kolbendampfmaschine dehnt sich der Dampf aus und bewegt dabei die Kolben. So wird die im Dampf gespeicherte Wärmeenergie in mechanische Energie umgewandelt.

Die Kolben in den Zylindern der Dampfmaschine werden abwechselnd von vorn oder hinten mit Dampf beaufschlagt. Die hin- und hergehende Bewegung der Kolben wird über die Treibstangen auf die Treibräder übertragen und damit in eine rotierende Bewegung umgewandelt.

Damit die Dampflok auch bei Totpunktlage einer Kurbelstellung anfahren kann, sind die Kurbelzapfen der gegenüberliegenden Räder einer Achse gegeneinander versetzt. Der Versatzwinkel beträgt bei Zwei- und Vierzylindermaschinen eine Vierteldrehung bzw. 90°, bei Dreizylindermaschinen eine Dritteldrehung bzw. 120°.

Datei:Walschaerts motion.gif
Heusinger-Steuerung. Zur detaillierten Erläuterung (engl.) ins Bild klicken.

Steuerung

Das Steuersystem besteht aus Schwinge, Gegenkurbel, Schieberschubstange, Voreilhebel, Kreuzkopf, Steuerzylinder mit Kolbenschieber, Dampfzylinder und Steuerstange.

Kolbenschieber-Steuerungen haben im Gegensatz zu Flachschieber- Steuerungen eine innere Einströmung.

Die Anpassung der Leistung und damit des Dampfverbrauches an die wechselnden Betriebsbedingungen wird mit einer zusätzlichen Steuerung realisiert. Deren Hauptbestandteile sind die an den Arbeitszylinder angesetzten Schieberzylinder mit Schieberkolben. Sie steuern Seite und Menge des Dampfeintritts in den Arbeitszylinder.

Im Betrieb eilen die Steuerschieber der Arbeitskolbenbewegung jeweils wechselnd voraus. Der Schieber öffnet den Zylinder, Dampf strömt ein. Nach etwa einem Drittel des Kolbenweges sperrt der Schieber den Einstrom ab. Die im Dampf vorhandene Energie treibt den Kolben durch Expansion weiter bis zu seinem Totpunkt. Die fortlaufend wechselnde Schieberbewegung wird durch ein Steuergestänge bewirkt, das an das Antriebsgestänge angeschlossen ist. Durch variables Einstellen der Steuerung lässt sich z. B. eine hohe Anfahrzugkraft durch lange Dampffüllung über den Kolbenweg erreichen. Durch Verminderung der Füllzeiten bei hoher Geschwindigkeit wird der Dampfverbrauch pro Kolbenhub auf das notwendige Maß reduziert, die Energieeffizienz verbessert sich, da die Dampfdehnung stärker ausgenutzt wird.

Der Lokführer stellt die Steuerung von Führerstand aus mit einer Handkurbel ein, wodurch an der Schwinge der Angelpunkt des Steuerungsgestänges und damit der Arbeitsweg des Schiebers verstellt wird. Das zweite Steuerelement neben der Schieberverstellung ist das Reglerventil auf dem Führerstand, das den Dampfdruck zu den Zylindern einstellt.

Die Steuerung hat damit zwei Endpunkte der Einstellung: zum einen den der voll ausgelegten Steuerung (mit einem Dampfdruck, bei dem die Räder der Lok gerade noch nicht durchdrehen - beim Anfahren wichtig), zum anderen den der nur minimal ausgelegten Steuerung (mit vollem Dampfdruck, um mit der maximal möglichen Expansion in den Zylindern das wirtschaftliche Optimum herzustellen).

Dazwischen liegen zahlreiche Betriebszustände, in denen es der Erfahrung und dem Fingerspitzengefühl des Lokführers überlassen ist, mit der Steuerungseinstellung den optimalen Punkt zur Energieausnutzung zu treffen. Durch Umsteuern der Füllreihenfolge kann die Fahrtrichtung umgekehrt werden. Einen gegengesteuerten Dampfdruck verwendet man auch als Gegendampfbremse.

Massenausgleich

Die hin- und hergehenden Massen der Kolben sowie auch der Kolben-, Treib- und Kuppelstangen verursachen bei der Umsetzung in die Drehbewegung erhebliche Unwuchten, die zu einem zuckenden Lauf der Lokomotive führen. Die Kolbenbewegungen einer zweizylindrigen Maschine gleichen sich dabei nicht gegenseitig aus, weil sie nicht um eine halbe, sondern um eine Viertelperiode versetzt arbeiten. Mit Ausgleichsgewichten an den Rädern können diese Kräfte teilweise, jedoch nicht vollständig ausgeglichen werden.

Die lediglich durch die Kuppelstangen und Kurbelzapfen entstehende Unwucht kann durch Ausgleichsgewichte vollständig aufgehoben werden, so dass das Problem z. B. bei älteren Elektrolokomotiven mit Stangenantrieb nicht auftritt. Zum Ausgleich der hin- und hergehenden Massen einer Kolbendampfmaschine müssen die Ausgleichsgewichte jedoch vergrößert werden, was wiederum zu einer Unwucht der Räder führt, die die Schienen belastet und bei hohen Drehzahlen sogar zum Verlust des Rad-Schiene-Kontakts (Springen der Räder) führen kann. Ein praxistauglicher Kompromiss bei der Auslegung des Massenausgleichs war daher wichtig bei der Konstruktion von schnell fahrenden Lokomotiven. In der Regel wurden nur etwa 30% bis 50% der hin- und hergehenden Massen ausgeglichen. Bei niedrigen Geschwindigkeiten und geringem Komfortanspruch, wie etwa beim Güterverkehr hat man teilweise auch ganz darauf verzichtet. Das Problem des Massenausgleichs kann durch den Bau von Lokomotiven mit mehr als zwei Zylindern verringert werden. Fast alle Schnellfahrlokomotiven hatten deshalb Triebwerke mit drei oder vier Zylindern.

Fahrwerk

Radgröße

Da die maximale Drehzahl bei Dampfmaschinen wesentlich geringer ist als bei modernen Traktionsarten, müssen Schnellzugloks mit jeder Radumdrehung einen möglichst langen Weg zurücklegen. Dies erfordert größere Treibräder mit bis zu 2,30 m Durchmesser. Eine Schnellzuglok verfügt im allgemeinen über drei Treibachsen, eine Güterzuglok über fünf. Als Folge sind Schnellzugloks daher bei gleicher Kesselleistung weniger zugkräftig, während Güterzugloks mit kleinem Kuppelraddurchmesser vergleichsweise langsam, aber zugkräftig sind. Die Schnellzugloks der Einheitsbaureihen der Deutschen Reichsbahn erreichten bis zu 180 km/h, die Güterzugloks der Einheitsbaureihen fuhren üblicherweise mit einer Geschwindigkeit von nur 80 km/h. Durch die eingeschränkte Beweglichkeit der hintereinander gekuppelten Achsen leidet die Kurvenlauffähigkeit des Fahrwerks. Dem wird durch leichte Seitenverschiebbarkeit der Achsen im Rahmen und durch geschwächte Spurkränze auf den inneren Radsätzen entgegengewirkt.

Gekuppelte Räder

Treibradsatz, Achse als Kurbelwelle für den 3. Zylinder ausgebildet; diese so gekröpfte Achse nennt man in der Fachsprache Kropfachse

Die Zugkraft einer Kolbendampfmaschine mit Rädern lässt sich nur dann zur maximalen Wirkung bringen, wenn zwischen Rädern und Schienen genügend Haftreibung vorhanden ist, damit die Räder nicht schleudern (durchdrehen). Ein Mittel dazu ist, die Last auf dem Rad bzw. der Achse zu erhöhen. Diese Möglichkeit ist aber wegen der Gleis-Tragfähigkeit begrenzt, daher werden mehrere Räder an Zapfen durch Kuppelstangen miteinander verbunden, um das gesamte Reibungsgewicht für den Antrieb zu erhöhen.

Daher ergibt sich vor allem für zugstarke Güterzugloks das Bild von vielen relativ kleinen Rädern (vier bis sechs auf jeder Seite), die mit Kuppelstangen verbunden sind. Genauso wie die maximale Radlast ist aber auch die Anzahl der kuppelbaren Achsen begrenzt, in diesem Fall durch die Baugröße der Lokomotive. Mit Sonderlösungen wie z. B. mit Knickrahmen oder Mallet-Lokomotiven wurde versucht, so viele Treibrädersätze wie möglich zum Einsatz zu bringen.

Hilfsaggregate

Dampfgetriebene Luftpumpe für das Befüllen der Bremsluftbehälter - Fachsprache: Hauptluftbehälter

Druckluft für die Bremsen

Die Bremsen von Dampflokomotiven bestehen zumeist aus Klotzbremsen an den großen Treibrädern, die zunächst von Hand, später mit Dampf oder ab ca. 1900 nur noch mit Druckluft betrieben wurden. Für die Druckluftbevorratung hat eine Dampflokomotive eine Druckluftpumpe oder Kompressor zur Druckerzeugung sowie Druckluftbehälter. An die letzteren wird die Bremsluftleitung der Wagen des angehängten Zuges angeschlossen. Die gesamte Bremsanlage des Zuges kann damit vom Führerstand aus gesteuert werden.

Dampf für die Zugheizung

In der kalten Jahreszeit besteht der Bedarf zur Heizung von Personenwagen. Dafür wurden Dampfleitungen in die Wagen eingebaut, die beim Ankuppeln an die Dampflokomotive an deren Heizdampfleitung angeschlossen wurden. Diese wurde auf der Lokomotive hauptsächlich mit Frischdampf aus dem Dampfkessel oder aus dem Zylinder-Abdampf gespeist.

Elektrische Stromversorgung

Mit der Einführung der elektrischen Zugbeleuchtung wurde auf Dampflokomotiven auch elektrische Energie mit eigenen, dampfgetriebenen Generatoren erzeugt, deren Drehzahl mittels eines Fliehkraftreglers konstant gehalten wird.

Versorgung mit Betriebsstoffen

Wasserversorgung

Tenderlok der Preßnitztalbahn beim Wassernehmen am Wasserkran

Da im Fahrbetrieb der im Kessel erzeugte Dampf aus den Zylindern über den Schornstein oder beim Anfahren über Zylinderventile in die Umgebung entlassen wird, muss der Wasservorrat im Kessel ständig nachgefüllt werden. Dazu wird ein Wasservorrat in Zusatztanks im Rahmen, seitlich des Kessels in Tanks oder bei größerer Menge in einem Schlepptender mitgeführt.

Für Non-Stop-Fahrten wie zum Beispiel bei dem Flying Scotsman von London nach Edinburgh oder bei der New York Central Railroad wurden Schöpfrohre verwendet, welche während der Fahrt in spezielle Tröge zwischen den Schienen abgesenkt wurden. Der durch die Fahrgeschwindigkeit entstehende Staudruck drückte das Wasser über die Rohre in den Tank des Tenders.

Für die Fahrt über weite, wasserarme Strecken wurde während des zweiten Weltkrieges in Argentinien und später auch in Südafrika mit Kondenstendern experimentiert, in denen ein großer Teil des Abdampfes wieder kondensiert werden kann. In Deutschland wurden viele Lokomotiven der Baureihe 52 mit dieser Technik gebaut. Dies führte zwar zu einer Wasserersparnis von z. T. über 90 %, war wegen des hohen Unterhaltungsaufwands jedoch nur selten wirtschaftlich.

In der Frühzeit geschah das Speisen des Kessels mit Wasser meist mit Plungerpumpen oder Fahrpumpen. Diese wurden über eine Exzenterwelle oder eine Kurbelwelle während der Fahrt der Lokomotive betrieben. Der Vorteil dieser Methode ist, dass sich die Fördermenge annähernd proportional zum zurückgelegten Weg verhält. Die Regelung der Menge geschah durch einen regelbaren Bypass. Bei längerem Stillstand oder bei längeren Fahrten bei starker Steigung (erhöhter Dampfbedarf) musste die Lokomotive vom Zug abkuppeln und auf einem freien Gleis hin- und herfahren, bis der Wasserstand wieder die gewünschte Höhe erreicht hatte.

Moderne Dampfloks müssen zwei unabhängig voneinander arbeitende Speiseeinrichtungen haben, um den richtigen Wasserstand im Kessel immer zu gewährleisten. Für die Auffüllung des unter Druck stehenden Kessels werden Kolbenpumpen und Injektorpumpen verwendet. Bei Kolbenpumpen treibt ein Dampfkolben einen kleinen Wasserkolben an, der das Wasser in den Kessel drückt. In der Injektorpumpe reißt ein Dampfstrahl Wasser in der Injektorkammer mit und drückt es in den Kesselraum.

Besonders nachteilig ist bei allen Arten der Pumpen das Speisen mit kaltem Wasser in den Kessel, ohne jede Vorwärmung. Im Bereich des Speisewassereintritts in den Kessel kam es dadurch zu großen Wärmespannungen im Material. Ab ca. 1900 wurde das kalte Speisewasser des Tenders durch sogenannte Vorwärmer geleitet und auf ca. 80 bis 90 Grad vorgewärmt dem Kessel zugeführt.

Der korrekte Wasserstand im Dampfkessel wird - wieder mit zwei unabhängig voneinander arbeitenden - Schaugläsern sowie Probierhähnen vom Heizer der Lokomotive kontrolliert. Ein zu niedriger Wasserstand kann zu einem Kesselzerknall führen, ein zu hoher Wasserstand birgt die Gefahr des Mitreißens von flüssigem Wasser mit anschließenden schweren Schäden am Überhitzer und in den Zylindern. Besonders im Zylinder verursacht schon die kleinste Menge Wasser den Wasserschlag: Der Freiraum zwischen Zylinderende und Kolben ist so gering, dass der sich bewegende Kolben durch das nicht komprimierbare Wasser im Zylinder den Zylinderdeckel regelrecht absprengt.

Um die Betriebssicherheit und Wirtschaftlichkeit der Dampflokomotive zu gewährleisten, wird das Kesselspeisewasser entsprechend aufbereitet. Insbesondere wird der Kesselsteinbildung vorgebeugt, indem die Kesselsteinbildner durch chemische Zusätze im Kessel zu Boden sinken (ausfällen) und dort eine schlammartige Schicht bilden (Innere Speisewasseraufbereitung). Durch das Abschlammventil kann dieser Bodensatz regelmäßig, auch während der Fahrt durch den Heizer, ausgeschwemmt werden. Zusätzlich wird der Kessel in größeren Abständen ausgewaschen.

Brennstoffversorgung

Die verwendeten Brennstoffe (überwiegend Kohle, teils auch Holz, Kohlenstaub, Torf oder Mineralöl) werden ebenso wie der Wasservorrat in Zusatzbehältern oder im Schlepptender mitgeführt. Bei den ersten Lokomotiven und bis zu einer bestimmten Baugröße werden Kohle und andere feste Brennstoffe vom Heizer per Hand bzw. mit einer Schaufel am Vorratsbehälter aufgenommen und durch das Feuerloch in die Feuerbüchse befördert.

Bei großen Lokomotiven gibt es für den Kohlen-Nachschub Hilfsantriebe, so genannte Stoker, die die Kohle aus dem Tender direkt in die Feuerbüchse befördern. Der Stoker besteht aus einer Förderschnecke, die vom Kohlenbehälter des Tenders mit Rohrleitung zur Feuerbüchse verläuft. Die Förderschnecke wird von einer Dampfturbine angetrieben.

Bei Öl- und Kohlenstaubfeuerung werden Förderelemente eingesetzt, die einen Brennstoffstrahl in die Feuerbüchse blasen. Gelegentlich wurde bei Speicherdampflokomotiven in Eisenwerken eine rotglühende Roheisen-Bramme in der Lokomotive deponiert. Mit dieser Heizwärme konnte die Lok etwa 2 Stunden unter den Hochöfen die Torpedowagen verschieben. Speicherlokomotiven konnten unter dem Hochofen auch direkt mit Dampf „betankt“ werden.

Führung der Lokomotive

Führerstand der „Preußischen P8“, Blick auf die Heizer-Seite.
Unten ist die Feuerbüchs-Tür zu erkennen, rechts mittig der angeklemmte Buchfahrplan des Lokführers.

Dampflokomotiven haben in der Regel über dem Rahmen und hinter der Feuerbüchse ein Führerhaus. Von dort werden sie von einem Zwei-Mann-Team gesteuert. Der Lokführer hat seinen festen (Sitz-) Platz auf der Seite, auf der sich die Fahrt- und Bremsregler befinden. In Kontinentaleuropa ist dies üblicherweise rechts, auf den britischen Inseln war auch die linke Seite gebräuchlich. Er beobachtet von dort die Strecke und die Signale und steuert den Lauf der Lok und des Zuges. Der Heizer überwacht und betreibt vor allem die Feuerung und Dampferzeugung (Brennstoff- und Wasser-Nachschub, Druckerzeugung) durch das Einbringen von Brennstoff in die Feuerbüchse. Der Heizer unterstützt den Lokführer bei der Signal-Beobachtung durch Meldungen und Bestätigungen. Für die letztere Funktion hat der Heizer einen (Sitz-)Platz auf der dem Lokführer gegenüberliegenden Seite des Führerhauses.

Anfänglich standen Lokführer und Heizer auf einer ungeschützten Plattform hinter der Feuerbüchse. Bei zunehmenden Geschwindigkeiten wurde es unerlässlich, davor einen Windschutz und zumindest den Ansatz eines Daches anzubauen. Die Einführung des geschlossenen Führerhauses bei Dampflokomotiven geht auf den Eisenbahnpionier Max Maria von Weber zurück, der die Strapazen des Lokomotivführers und des Heizers vor allem in der winterlichen Jahreszeit aus eigener Anschauung kannte und in seinem literarischen Werk beschrieb. Sitzplätze wurden jedoch auch danach zunächst als „unerhörter Komfort“ und als der Aufmerksamkeit zur Streckenbeobachtung abträglich angesehen.

Zur Bildung von Wendezügen wurde mit Signalvorrichtungen zwischen Steuerwagen und schiebender Lokomotive experimentiert, die in ihrer Funktionsweise an die Maschinentelegrafen aus der Seefahrt erinnern. Erfolgreich wurde dies 1936 bei den Stromlinienzügen der Lübeck-Büchener Eisenbahn praktiziert. Dies erforderte jedoch eine feste Zugzusammenstellung, die die freizügige Verwendung der Lokomotiven einschränkte und deshalb nicht weiter verfolgt wurde.

Standards, Entwicklungsgrenzen, Sonderbauformen

Standard-Entwicklungen

Deutsche „Einheitslokomotive“ Baureihe 41, eine mittelschwere Güterzugdampflok, hier in der Ausführung als Umbaulokomotive der Deutschen Bundesbahn

Die verbreitetste und einfachste Bauform der Dampflokomotive hatte vorn ein bis zwei Laufrad-Sätze und darauf folgend drei bis fünf miteinander gekuppelte Treibachsen sowie eventuell noch einen Laufradsatz unter dem Führerhaus. Die Dampfmaschine bestand aus einem Kessel mit Nassdampf- oder Heißdampferzeugung und zwei doppelt wirkenden Zylindern mit einfacher Dampfdehnung.

In den 1920er Jahren entstanden in Deutschland ELNA-Dampflokomotiven. Die Abkürzung ELNA steht für Engerer Lokomotiv-Normen-Ausschuß. Die Lokomotiven sollten durch Vereinheitlichung wirtschaftlicher produziert und betrieben werden können.

Unter dem Namen Einheitslokomotiven wurden ab 1925 unter der Regie der Deutschen Reichsbahn, unter Leitung des früheren Reichsbahndezernenten Richard Paul Wagner, entwickelt und gebaut. Man hatte sich entschlossen, bewährte Länderbahnlokomotiven durch Neuentwicklungen zu ersetzen. Hauptgrund war die Verwendung einheitlicher Bauteile und eine Normierung. Einheitliche Lager, Speisepumpen, Rauchrohre, Zylinderblöcke, Armaturen machten die Austauschbarkeit einfacher und den Unterhalt günstiger. Die erste Einheitslok war die Baureihe 01 als 2`C1`h2 . Spätere Lokomotiven der Deutschen Bundesbahn wurden auch als Standard-Typen in großen Serien gebaut.

Allgemeine Grenzen

Baugrößen

Die Leistungen der Dampflokomotive werden bestimmt durch Kolbendurchmesser, Dampfdruck, Zylinderzahl, Anzahl der Treibräder und ihrem Durchmesser. Alle diese Parameter sind jedoch nur begrenzt veränderbar.

Der Raddurchmesser ist entscheidend für die Höchstgeschwindigkeit. Er kann jedoch nicht beliebig gesteigert werden, ohne die Größe des Kessels und damit die Zugkraft zu beeinträchtigen. Die Unwuchten der bewegten Massen im Kurbeltrieb können auch nicht vollständig ausgeglichen werden. Sie führen bei höheren Geschwindigkeiten zu unruhiger Fahrt.

Die meisten moderneren Dampfloktypen haben 16 bis 20 bar Betriebsdruck. Dampfloks mit höherem Dampfdruck (bis 60 bar) erforderten langfristig aufwendigere Instandhaltungsarbeiten und wurden daher nicht weiterentwickelt.

Baulich bedingt lässt sich die Zylinderzahl bei Standard-Typen nur bis auf vier Stück steigern. Es gab Lokomotiven, die mit Hochdruckzylindern und nachgeordneten Niederdruckzylindern (Verbundmaschinen) das Arbeitsvermögen des Dampfes besonders gut auszunutzen versuchten.

Da die Instandhaltungskosten dabei stiegen, haben sich letztlich mehrheitlich Loks mit zwei oder drei Zylindern und nur einer Expansionsstufe durchgesetzt. Vor allem Eisenbahnen wie in den USA, England und Norddeutschland, wo Kohle relativ günstig und leicht verfügbar war, verzichteten auf den höheren Wirkungsgrad. Umgekehrt verfuhren Frankreich, die Schweiz und die süddeutschen Eisenbahnen, die bis zum Ende der Dampftraktion bzw. bis zum Ende ihrer Eigenständigkeit Verbundlokomotiven beschafften. Auch die DB modernisierte noch in der Phase des einsetzenden Traktionswandels 30 Vierzylinder-Verbundlokomotiven zur Baureihe 18.6.

Leistungen

Unter den mitteleuropäischen Bedingungen entstanden Lokomotiven, die bis 200 km/h Spitzengeschwindigkeit erreichten (Deutsche Reichsbahn Lok 05 002, und die britische LNER-Lok Mallard). Mit Verbundmaschinen wurden Leistungen bis zu 5300 PS bzw. 4000 kW erreicht (SNCF-Baureihe 242 A1). Bezogen auf das Leistungsgewicht (Masse pro Leistung) galt die von André Chapelon umgebaute 240P der französischen SNCF als leistungsfähigste Lokomotive.

Die weltweit größten Dampfloks waren die Mallet - und Triplex-Lokomotiven amerikanischer Bahnen. Sie hatten unter ihrem Rahmen und inklusive Tender bis zu drei eigenständige Fahrwerke mit jeweils eigenen Kolbendampfmaschinen. Praktisch alle großen und modernen US-amerikanischen Dampfloks lagen im Leistungsbereich von 5000 bis 8000 PS, was durch vergleichsweise sehr große zulässige Abmessungen und Gewichte ermöglicht wurde.

Die Baureihe S-1b („Niagara“) der New York Central beförderte im täglichen Betrieb 22 Pullman-Schnellzugwagen mit über 1600 t Gewicht in der Ebene mit 161 km/h. Bei Versuchsfahrten wurden mit dieser Last sogar 193 km/h erreicht. Heutige deutsche IC- und EC-Züge sind demgegenüber vergleichsweise etwa halb so schwer. Die Baureihe S-1b hält auch den Rekord der monatlichen Laufleistungen für Dampfloks - bis über 44.000 km wurden erreicht, mit Zügen wie den oben erwähnten, die auf der 1485 km-Strecke von Harmon, N.Y. nach Chicago ohne Lokwechsel befördert wurden.

Der sehr personalintensive Unterhalt der Dampfloks (zwei Mann auf der Lok, Auswaschpersonal usw.), die sehr intensive und aufwendige Prüfung und Unterhalt der Lok (2-tägliches bis maximal wöchentliches Auswaschen der Kessel), die vom TÜV vorgeschriebenen Untersuchungen der Dampfkessel wegen der Gefahr der Kesselexplosionen und die parallel angehende Vervollkommnung der Elektrolok bzw. der Diesellok führten etwa in den 1970ern bei fast allen Bahnen der Welt zur Ausmusterung der bewährten Technik. Aber auch der geringe Wirkungsgrad, der meist bei etwa 8 bis 10 Prozent lag, und die Verschmutzungen durch Kohlenruß führten dazu, dass die Dampflok immer mehr von Diesel- und Elektroloks abgelöst wurde. Allerdings sind – wie oben erwähnt – die konstruktiven Möglichkeiten der Dampflokomotive zu dieser Zeit noch nicht vollständig ausgenutzt worden.

Sonderentwicklungen

Höhere Anforderungen, günstige oder ungünstigere Bedingungen, haben zu Sonderbauformen von Dampflokomotiven geführt. Hier sind vor allem die zu Beginn in Frankreich und Deutschland sehr verbreiteten Crampton-Lokomotiven, die später erscheinenden Mallet- und Garratt-Lokomotiven sowie Antriebs-Varianten zu nennen. Eine umfangreiche Übersicht ist unter Dampflokomotive (Bauart) aufgelistet.

Geschichtlicher Überblick

Die Dampflokomotive war die ursprüngliche und lange Zeit vorherrschende Lokomotivbauart. Sie war das erste Zugmittel, das größere Leistung mit kompakter Bauform vereinen konnte und so die erfolgreiche Verbreitung des Eisenbahn-Systems bewirkte.

Vorläufer-Entwicklungen

Die Entwicklung der Dampflokomotive stützte sich auf mehrere Vorläufer-Entwicklungen. Die erste Stufe war die von Thomas Newcomen erfundene Dampfmaschine, bei der ein Schwungrad den Zylinder nach jedem Arbeitshub in die Ausgangslage zurückbrachte. Der nächste Schritt erfolgte, als James Watt den Dampf wechselweise auf beide Seiten des Kolben wirken ließ. Bis dahin arbeiteten die Dampfmaschinen mit nur geringem Überdruck gegenüber dem atmosphärischen Umgebungsdruck. Als Richard Trevithick eine Dampfmaschine entwickelte, die mit einem drei- bis viermal höheren als dem atmosphärischen Druck arbeitete, wurde es möglich, eine leistungsfähige Arbeitsmaschine zu bauen, die hinreichend kompakt war, um auf ein Fahrzeug zu passen. Dies führten erstmals Nicholas Cugnot 1769 und 1802 und 1803 auch Richard Trevithick durch, die jeweils einen Straßen-Dampfwagen bauten. Damit wurde mit Hilfe der Dampfmaschine eine räumlich unbegrenzte Fahrbewegung möglich, und es war dann nur noch ein kurzer Schritt, die bereits in den Bergwerken bestehenden dampfbetriebenen Seilzuganlagen durch einen auf die Schienen gestellten Dampfwagen zu ersetzen.

Erste Dampflokomotiven auf Schienen

Trevithicks Lokomotive von 1804 (Modell)
Datei:The Rocket.JPG
Lokomotive „Rocket“ im Science Museum, London

1804 baute dann Richard Trevithick die erste auf Schienen fahrende Dampflokomotive. Sie erwies sich als funktionsfähig, doch die für ihr Gewicht nicht ausgelegten gusseisernen Schienen zerbrachen unter dieser Lokomotive.

Um diese Zeit gab es in englischen Bergwerksanlagen in Cornwall und um das nordostenglische Kohlenrevier um Newcastle upon Tyne mehrfache Entwicklungsversuche zu Dampflokomotiven, u.a. von Timothy Hackworth ab 1808, John Blenkinsop 1812, William Hedley 1813, George Stephenson 1814 und anderen. Im Jahr 1825 wurde die von Edward Pease initiierte Eisenbahnstrecke zwischen Stockton und Darlington, England, mit einer Lokomotive von George Stephenson eröffnet und gleichzeitig der erste Passagier-Transport mit einem lokomotiv-gezogenen Zug durchgeführt.

Für die geplante Bahn zwischen Liverpool und Manchester wurde im Oktober 1829 das berühmte Rennen von Rainhill durchgeführt, bei dem die bestgeeignete Lokomotive ermittelt werden sollte. Von den fünf teilnehmenden „echten“ Lokomotiven gewann The Rocket von Robert Stephenson das Rennen, die auf der 50 km langen Strecke eine Höchstgeschwindigkeit von 48 km/h erreichte und - das war das Entscheidende - als einzige das Rennen ohne Ausfall überstand. Die gleichfalls im Wettbewerb befindliche „Sans Pareil“ von Timothy Hackworth hatte Zylinder, die in der Werkstatt von Robert Stephenson gegossen wurden und von denen einer kurz nach dem Start zum Rennen explodierte - ein damals eher „regulärer“ Ausfall. Am 15. September 1830 wurde die Bahn zwischen Liverpool und Manchester eröffnet, wobei sowohl die siegreiche „Rocket“ als auch die „Sans Pareil“ in den Betrieb übernommen wurden.

In den USA führte Oberst John Stevens 1826 eine dampfbetriebene Lokomobile auf einer ringförmigen Fahrspur in Hoboken, New Jersey, USA vor. 1830 baute Peter Cooper mit der Tom Thumb die erste Dampflokomotive in Amerika für eine öffentliche Eisenbahn, und mit der DeWitt Clinton nahm am 24. September 1831 die erste fahrplanmäßige US-Lokomotive zwischen Albany (New York) und Schenectady mit rund 50 km/h ihren Dienst auf. Nicht unerwähnt sollte auch die in England hergestellte und nach Amerika gelieferte John Bull (Lokomotive) bleiben. Auch sie wurde 1831 in Dienst gestellt, 1866 ausgemustert und zuletzt 1981, mittlerweile 150 Jahre alt, nochmals unter Dampf genommen. Sie ist eine der letzten original überlieferten Maschinen der Dampflokfrühzeit.

Die erste dampfbetriebene Bahnlinie auf dem europäischen Kontinent wurde am 5. Mai 1835 zwischen Brüssel und Mecheln in Belgien eröffnet.

In Deutschland fuhr als erste Dampflokomotive im Juni 1816 eine Maschine Blenkinsop'scher Bauart, die von Johann Friedrich Krigar in der Königlichen Eisengießerei zu Berlin gebaut wurde, auf einem Rundkurs im Hof der Fabrik. Es handelte sich um die erste auf dem europäischen Festland gebaute Lokomotive und um den ersten dampfgeführten Personenverkehr, da Schaulustige gegen Entgelt in angehängten Wagen mitfahren konnten. Am 7. Dezember 1835 fuhr erstmalig zwischen Nürnberg und Fürth auf der Bayerischen Ludwigsbahn die Lokomotive Der Adler. Sie war bereits die 118. Maschine aus der Lokomotivenfabrik Robert Stephensons und stand mit der Typbezeichnung „Patentee“ unter Patentschutz.

Die "Austria", die erste Lokomotive in Österreich.

In Österreich fuhr 1837 die erste Dampfeisenbahn auf der Kaiser-Ferdinand-Nord-Bahn zwischen Wien-Floridsdorf und Deutsch-Wagram.

1838 entstand die dritte in Deutschland gebaute Dampflokomotive Saxonia bei der Maschinenbaufirma Übigau bei Dresden, gebaut von Prof. Johann Andreas Schubert. 1848 war die erste von den Henschel-Werken in Kassel produzierte Lokomotive, der Drache, ausgeliefert worden.

Die erste Eisenbahnstrecke über Schweizer Landesgebiet war die 1844 eröffnete Strecke Straßburg - Basel. Drei Jahre später, 1847, wurde als erste Schweizer Eisenbahnstrecke die Spanisch Brötli Bahn von Zürich nach Baden eröffnet.

Weitere Entwicklungsschritte

Erste Versuche, Erfolge und Irrwege

Die damals trotz der Pionierleistungen der Maschinenbauer vielfach immer noch unverstandenen Zusammenhänge zwischen Mechanik, Thermodynamik und Kraftübertragung führten bei Verbesserungsversuchen zu Konstruktionen, die oft eine bestimmte Eigenschaft verstärkten, dabei aber den Gesamtzusammenhang von Wärmeerzeugung, Kesselleistung, Radanordnung und Gewichtsverteilung aus dem Blick verloren.

Der folgende Überblick beschäftigt sich mehr mit den Entwicklungen, die zur letztlich erfolgreich verbreiteten Standardbauweise führten. Die erheblich davon abweichenden Konstruktionen sind in Dampflokomotive (Bauart) aufgeführt.

Die erste Maschine von Trevithick hatte zwei Radsätze, die beide von einem riesigen Zahnrad angetrieben wurden. Nach dem deutschen Achsfolge-Bezeichnungs- bzw. Zählsystem war dies eine „B“- Lokomotive. Auch Stephensons spätere „Locomotion“ war mit 2 angetriebenen Achsen eine „B“-Type, im Gegensatz zu Trevithick baute Stephenson jedoch Kurbelzapfen an die Räder, die mit Kuppelstangen verbunden wurden. Dies wurde dann der verbreitetste Mehrfach-Radsatz-Antrieb, der später auch bei den ersten Elektro- und Diesellokomotiven übernommen wurde.

Crampton-Lok

Stephensons 1829 gebaute „Rocket“ war demgegenüber teilweise ein Entwicklungs-Rückschritt, da sie nur eine angetriebene Achse vorn und dahinter einen kleineren Laufradsatz hatte (Achsfolge A1). Dies ermöglichte zwar ohne große konstruktive Schwierigkeiten größere Treibräder für höhere Geschwindigkeiten, minderte aber das für die Zugkraft wichtige Reibungsgewicht des Antriebs. Die gleiche konstruktive Unzulänglichkeit wurde 15 Jahre später mit Lokomotiven des Crampton-Typs sogar noch weitergetrieben. Die „Cramptons“ hatten noch größere Treibräder, die aus Platzgründen hinter dem tief liegenden schweren Kessel unter dem Führerstand angebracht waren. Die tiefe Kessellage sollte einen ruhigen Lauf bewirken. Damit hatten die Cramptons Schwierigkeiten beim Anfahren, denn die gering belasteten Treibräder drehten leicht durch (so genanntes Schleudern). Hatten die Cramptons ihren Zug erst einmal in Fahrt gebracht, konnten sie mit ihrem langen und damit leistungsfähigen Kessel, der auf bis zu drei voranlaufenden Achsen lagerte, beträchtliche Geschwindigkeiten entwickeln.

Timothy Hackworth begriff schon früher den Zusammenhang zwischen Reibungsgewicht und Zugkraft und baute bereits 1827 die „Royal George“ als Dreikuppler (Achsfolge C). Güterzuglokomotiven mit drei gekuppelten Radsätzen blieben jahrzehntelang Standard.

Die 1835 von Robert Stephenson nach Deutschland gelieferte Maschine, die als „Der Adler“ die erste auf deutschen Gleisen war, hatte mit je einem Laufradsatz vor und hinter dem mittig unter dem Kessel angebrachten Treibradsatz (Achsfolge 1A1) nur bescheidene Zugkraft und Höchstgeschwindigkeit. Diese einfache Konstruktion erwies sich vermutlich als zuverlässig im Betrieb, denn Dampflokomotiven mit nur einem Treibradsatz wurden für verschiedene deutsche Länderbahnen noch bis in die späten 1860er Jahre gebaut; so blieb vor allem die bayerische Staatsbahn der „1A1“ lange Zeit treu.

Amerika übernimmt von England die Pionierrolle

Lokomotive Typ „American“
Empire State Express

Eine Spezialität US-amerikanischer Bahnen waren die langen und mit geringer Sorgfalt zusammengelaschten Schienenwege, die zu einem unruhigen Lauf der Lokomotiven mit der von England übernommenen Bauweise des starren vierrädrigen Fahrgestells führten. Um diesen Schwierigkeiten zu begegnen, wurde bereits 1836 von Henry Roe Campbell eine Lokomotive mit der Achsfolge 2’B (amerikanische Bezeichnungsweise 4-4-0), also mit zwei Laufradsätzen vorn und zwei gekuppelten Treibradsätzen dahinter, entwickelt und patentiert. Bei Gleis-Unebenheiten gewährleistete diese Bauweise, dass die Treibräder einen besseren Kontakt mit den Schienen hatten. Bis 1884 waren sechzig Prozent aller US-Dampflokomotiven „4-4-0“er und wurden als „American Standard“ oder kurz „American“ bekannt. Als die Zuggewichte größer und die Geschwindigkeiten höher wurden, wurde die bewährte „American“ einfach in allen Bauteilen vergrößert und verstärkt, um den erhöhten Anforderungen zu genügen.

Von der „New York Central-4-4-0“ Nummer 999 mit ihren 2,15 m hohen Treibrädern wird berichtet, dass sie am 10. Mai 1893 mit dem aus vier Wagen bestehenden „Empire State Express“ zwischen Batavia und Buffalo, New York, eine Geschwindigkeit von 112,5 mph (= 181 km/h) erreichte. Bis zum Ende des Jahrhunderts wurden Variationen der „American“ in den USA etwa 25.000 mal gebaut. In Europa wurde diese Bauart mit mehr oder weniger langem Zeitverzug übernommen, meist zunächst als „1B“-Type mit einem Laufradsatz vorn und zwei gekuppelten Treibradsätzen.

Das Ende der „American“-Ära kam in den 1880er Jahren mit der zunehmenden Verbreitung der 1875 von George Westinghouse erfundenen Luftdruckbremse. Anstelle der handgebremsten Züge ermöglichten diese leistungsfähigen Bremsen längere und schwerere Züge, für die es nicht mehr ausreichte, die „4-4-0“ einfach größer zu bauen. Dies führte zu Lokomotiven mit drei- und vierfach hintereinander gekuppelten Treibradsätzen.

In Europa wurde anfangs für schnellere Lokomotiven bevorzugt eine tiefe und stabile Kessellage angestrebt, die jedoch ungünstig war für die Anordnung mehrerer großer Treibradsätze. Wesentliche Impulse zur Überwindung dieser Angst vor dem hohen Schwerpunkt kamen aus den USA. So entstanden bald auch hier neue Lokomotiven mit immer höherer Kessellage, die den Einsatz von mehreren Kuppelradsätzen erlaubten.

Ein weiterer Entwicklungsschritt war die Einführung des Verbundmaschinen-Prinzips im Dampflokomotivbau, nachdem dieses sich bereits auf Dampfschiffen bewährt hatte. Hierbei wird das Ausdehnungsbestreben des Dampfes nach dem Auslass aus einer ersten Arbeitsstufe noch einmal in einer zweiten Stufe in einem Niederdruckzylinder genutzt. Der Schweizer Anatole Mallet meldete hierzu 1874 ein Patent für die Verwendung auf Lokomotiven an.

Das Prinzip wurde zunächst auf Lokomotiven mit zwei separaten Fahr- und Triebwerken („Malletloks“) durch Hintereinanderschaltung der Zylinderpaare genutzt. Später wurde das Verbundprinzip auch auf Lokomotiven mit nur einem Fahrwerk angewendet, zunächst bei Lokomotiven mit zwei Zylindern. Zweizylinder-Verbundloks benötigten eine besondere Anfahrvorrichtung, um bei Totpunktlage eines der Zylinder anfahren zu können. Danach ging man besonders im Schnellzugdienst zu Vierzylinder-Verbundloks über. Bei diesen Lokomotiven war die erste Treibradachse als Kurbelwelle ausgebildet und wurde von zwei innerhalb des Rahmens liegenden Hochdruckzylindern getrieben. Außen am Rahmen lagen die größeren Niederdruckzylinder, die in der üblichen Weise auf die Kurbelzapfen des zweiten Treibradsatzes arbeiteten. Der meist vorhandene dritte Treibradsatz war mit den beiden vorderen durch die üblichen außen liegenden Kuppelstangen verbunden.

Mit größeren Lokomotiven ergab sich das Problem der Kurvenläufigkeit von Starrrahmenlokomotiven. Im Jahre 1884 ließ sich wiederum Anatole Mallet die heute unter seinem Namen bekannte kurvengängige Lokomotivbauart mit zwei Triebwerken, von denen eines drehbar oder seitlich verschiebbar gelagert ist, patentieren. In der Folge wurden bei vielen deutschen Länderbahnen gegen Ende des 19. Jahrhunderts insgesamt etwa 150 Malletloks gebaut. Das Malletlok-Prinzip wurde jedoch erst in den USA zu seiner höchsten Blüte geführt. Statt zumeist kleiner Nebenbahn-Lokomotiven wie in Europa wurden hier mit Hilfe der Mallet-Konstruktion die wahren Dampflok-Giganten - jedoch meist ohne die Verbund-Schaltung der Triebwerke - gebaut.

Die 180.01 der KkStB

Wenn die Anforderungen an die Kurvengängigkeit nicht so hoch waren, wurden für die bessere Kurvengängigkeit die Spurkränze der äußeren Treibradsätze in schwächerer Form ausgeführt, so dass Gleiskurven befahren werden konnten, ohne dass die Lok aus den Schienen sprang. Nach Voruntersuchungen von Helmholtz wandte der Österreicher Karl Gölsdorf bei großen Starrrahmenlokomotiven auch eine Verschiebung der Treibachsen an. Damit war das Problem der Kurvenläufigkeit großer leistungsfähiger Starrrahmenlokomotiven gelöst.

Die letzte fehlende Komponente für die moderne Dampflok war die Entwicklung des Überhitzers, der es ermöglichte, die Dampftemperatur soweit zu erhöhen, dass während der Expansion im Zylinder keine Verluste durch Kondensierung entstanden. Hier tat der deutsche Ingenieur und Maschinenbauer Wilhelm Schmidt (Heißdampf-Schmidt) den entscheidenden Schritt mit der Erfindung des Überhitzers, mit dem sich der Heißdampf mit Temperaturen von 350 °C betriebsmäßig im Dampfmaschinenkessel herstellen ließ. Damit konnte der thermische Wirkungsgrad der Dampfmaschine um die Hälfte verbessert werden. Damit wurden 1897 für die preußische Staatsbahnen die ersten zwei Lokomotiven (eine S 3 und eine P 4) mit Flammrohrüberhitzer geliefert.

Höhepunkte der Entwicklung

Lokomotive Typ „Pacific“

Eine weitere markante und erfolgreiche Entwicklung war die „Pacific”-Dampfloktype mit der Achsfolge 2’C1’ bzw. der amerikanischen Bezeichnung 4-6-2. Sie entstand wiederum in den USA und wurde besonders verbreitet, als die Zuggewichte sich um 1910 durch stählerne Waggons erhöhten und von den 4-4-0- und 4-4-2-Typen nicht mehr bewältigt werden konnten.

Nachdem 1901 von Baldwin in den USA erstmals eine Lokomotive mit der Achsfolge 2’C1’ nach Neuseeland geliefert worden war, wurde 1902 von Brooks, einer späteren Tochter der ALCO eine 4-6-2-Type an die Missouri Pacific-Eisenbahn ausgeliefert, von der fortan der Kenname „Pacific“ herrührte. Begünstigend für die Entwicklung und Verbreitung der „Pacific“ war auch, dass gleichzeitig die Anwendung des Heißdampf-Überhitzer-Prinzips einsetzte, was mit dieser Type zusammen mit der größeren Feuerbüchse und dem längeren Kessel zu einer sprunghaften Leistungssteigerung führte, die lange Zeit weitere Entwicklungen vor allem bei Schnellzuglokomotiven erübrigte. Es wird gesagt, dass von Lokomotiven mit der „Pacific“-Achsfolge alleine in Nordamerika mehr als 10.000 Stück gebaut wurden.

Nordamerikanische 2-8-8-2 Mallet Lokomotive, USRA-Konstruktion von 1919

In den späten 1930er und den 1940er Jahren werden technische Höhepunkte der Dampftraktion erreicht mit sowohl den stärksten und größten und den schnellsten je gebauten Maschinen, den riesigen US-amerikanischen Mallet-Lokomotiven und Schnellfahr-Dampflokomotiven wie etwa der deutschen Baureihe 05 oder der englischen „A4“, die bei Versuchsfahrten jeweils knapp über 200 km/h erreichten.

Moderne US-amerikanische Güterzugdampfloks hatten Dauerleistungen von bis zu 8000 PS (C&O-Baureihe H-8, PRR-Baureihe Q-2), Schnellzugloks kamen auf bis zu 6700 PS (NYC-Baureihe S-1b, „Niagara“). Sie waren extrem robust gebaut, da bei den hohen Zuglasten (fahrplanmäßig 10.000 bis 15.500 Tonnen im schweren Güterzugdienst, 1000 bis 1800 Tonnen im schweren Schnellzugdienst) der „flat out“ („volle Pulle“) – Betrieb an der Tagesordnung war. Da eine Schnellzuglok bis zu 2840 km vor ihrem Zug blieb (AT & SF - Baureihe 2900, auf der Strecke Kansas City – Amarillo – Los Angeles), waren Zuverlässigkeit und leichte Wartbarkeit oberstes Gebot.

Die meistgebauten Lokomotiven in Deutschland waren die „Baureihe 55.25-58“ und die „Kriegslokomotiven“ der deutschen Baureihe 52. Die Baureihe 55.25-58, preußische G8.1 wurde in 4995 Exemplaren gebaut und war damit die meistgebaute Länderbahndampflok, gefolgt von der Personenzuglok „P 8“ mit der Achsfolge 2'C , die seit 1906 von der Berliner Maschinenbau AG und den Linke-Hofmann Werken in Breslau in etwa 3800 Exemplaren gebaut wurde, wovon etwa 500 Stück ins Ausland geliefert wurden. Die meisten dieser Lokomotiven wurden in den Jahren 1919 bis 1924 fertiggestellt.

Die deutsche Baureihe 52 war eine erheblich vereinfachte Version der Güterzuglok-Baureihe 50 mit der Achsfolge 1'E, von der zwischen 1942 und 1945 etwa 6500 Stück für den erhöhten Transportbedarf im Zweiten Weltkrieg gebaut wurden. Die Baureihen 50 und 52 zusammen erreichten eine Stückzahl von etwa 10.000. Neben den Preußischen Staatseisenbahnen waren es nur noch die Eisenbahnen der Sowjetunion, die verschiedene Lokbaureihen in Stückzahlen über 3000 bauen ließen.

In der Schweiz wurde mit der C 5/6 2978 ungewöhnlich früh, nämlich im Jahr 1917, die letzte Dampflokomotive der SBB-Geschichte ausgeliefert. Die fortschreitende Elektrifizierung verhalf den E-Loks zum Siegeszug.

Geschwindigkeits-Entwicklung

Jahr Land / Bahn Lok Bezeichnung Geschwindigkeit
in km/h
1769 Frankreich / Paris Dampfwagen von Cugnot 3,5 - 4
1825 England / Stockton and Darlington Railway Locomotion“ von George Stephenson 24
1830 England / Liverpool-Manchester The Rocket“ von Robert Stephenson 48
1835 England / Liverpool-Manchester Lokomotive von Sharp & Roberts über 100
1890 Frankreich „Crampton No. 604“ 144
1893 USA / New York Central Railroad No. 999 181
1901 Österreich-Ungarn / Teststrecke bei Wien Lokomotive von Praga 140
1907 Deutschland / K.Bay.Sts.B. S 2/6 154
1935 Frankreich / NORD 3.1174 174
1935 USA / Chicago, Milwaukee, St. Paul and Pacific Railroad Klasse A Nr. 1 181
1936 Deutschland / Deutsche Reichsbahn 05 002 200,4
1938 England / LNER Klasse A4 Nr. 4468 „Mallard“ 201,2

Vor allem aus den USA, wo die gegenüber Europa um ca. 50% höheren zulässigen Achslasten den Bau leistungsfähiger und entsprechend robuster Lokomotiven begünstigten, sind vereinzelt Geschwindigkeiten bekannt geworden, die über die in der Tabelle genannten Rekorde hinausgingen, jedoch mangels einer offiziellen Bestätigung nicht anerkannt wurden.

Die wahrscheinlich mit Abstand schnellste Dampflokomotive überhaupt war die Klasse S1 No. 6100 der Pennsylvania Railroad, eine 3'BB3'-Duplex-Lokomotive, die im Jahre 1946 227,2 km/h (141,2 mph) erreicht haben soll. Während sich Fachleute einig darüber sind, dass die Lok die behauptete Geschwindigkeit durchaus erreichen konnte, so gibt es bis heute keinen Beleg für eine solche Fahrt. Etliche angegebene Details wie das Datum oder die Vorgehensweise der Kontrollbehörde ICC, lassen diesen Bericht unglaubwürdig erscheinen. Ähnliche Berichte, allerdings aus amerikanischen Quellen, sprechen von derartigen Geschwindigkeiten im Zusammenhang mit den T1 Lokomotiven. Keine dieser Loks ist mit einem Messwagen ausgefahren worden.

Auch wenn eine Messung mit Stoppuhren (dabei wurde der Zeitabstand zwischen dem Passieren zweier Meilenpfosten gemessen) nicht sehr genau ist, erscheint diese Geschwindigkeit angesichts einer auf dem Prüfstand gemessenen Leistung der S1 von ca. 8.000 PS durchaus nicht unrealistisch. Das gleiche gilt für die der Klasse A der Chicago, Milwaukee, St. Paul & Pacific Railroad nachgesagten Geschwindigkeiten von bis zu 209 km/h, obwohl die mit einem Messwagen ermittelte Höchstgeschwindigkeit dieser modernsten und größten je gebauten Atlantic-Lokomotive (Achsfolge 2'B1') nur bei 181 km/h gelegen hat.

Andere inoffizielle Rekorde erscheinen dagegen weniger glaubhaft. So soll im Jahr 1901 eine 2'C-Lokomotive der Savannah, Florida & Western Railway mit einem Treibraddurchmesser von nur 1.854 mm eine Geschwindigkeit von 120 mph (193 km/h) erreicht haben. Auch die 127,1 mph (205 km/h), die eine Atlantic-Lokomotive der PRR Klasse E2 im Jahr 1905 erreicht haben soll, erscheinen unglaubwürdig. Dennoch wurde dieser Wert von der PRR veröffentlicht und gilt in den USA manchmal als höchste Geschwindigkeit, die je eine Dampflokomotive erreicht hat.

Ende der Dampflok-Ära in Europa und den USA

In den USA wurden seit den 1940er Jahren zunehmend Diesellokomotiven eingesetzt, die sich durch Kuppeln mehrerer Einheiten flexibler an wechselnde Anforderungen von Zuggröße und Streckenverlauf anpassen ließen. Zudem waren die Diesellokomotiven schneller startbereit, wo bei Dampflokomotiven stundenlanges Vorheizen erforderlich war. So zeichnete sich in den USA schon in der Zeit zwischen den Weltkriegen mit den letzten Dampflokomotivlieferungen für manche Eisenbahngesellschaft und mit dem Niedergang der größten Dampflokomotiv-Produzenten Baldwin, LIMA und ALCO in den 1950er und 1960er Jahren das Ende der Dampflok-Ära ab.

Nachdem in Deutschland die Dampflokomotiven vor 1939 bereits auf dem Rückzug waren und durch moderne Diesel- und besonders Elektrolokomotiven abgelöst werden sollten, kam ihnen im völlig zerstörten Nachkriegsdeutschland wieder eine höhere Bedeutung zu. Die vor und während des Krieges aufgebauten Streckenelekrifizierungen waren weitgehend unbrauchbar, was einen flächendeckenden Einsatz von E-Loks unmöglich machte.

Im mittleren Europa war die Diesellokomotive keine so große Konkurrenz für die Dampflokomotive wie in den USA. Hier waren jedoch in den Alpenländern Österreich, der Schweiz sowie auch im deutschen Bayern die Dampflokomotiven schon in den 1960er Jahren weitgehend von den Elektrolokomotiven verdrängt. Für die Elektrolokomotiven boten die Alpenländer mit ihrer Elektrizitätserzeugung aus den Wasserkraftwerken günstigere Einsatzbedingungen, und umgekehrt boten die Elektroloks durch die Überlastbarkeit ihrer Motoren Vorteile auf den steigungsreichen Strecken. Mit zunehmender Elektrifizierung der Flachlandstrecken wurde auch in Mitteleuropa die Dampflok immer weniger eingesetzt.

Die Sowjetunion verkündete 1956 völlig überraschend, den Dampflokomotivbau einzustellen. Begründet wurde dies mit der problematischen Wasserversorgung in bestimmten Regionen sowie mit dem Vorhandensein eigener Ölvorkommen. Während der Dampfbetrieb offiziell in den 1970er Jahren eingestellt wurde, standen tausende Dampflokomotiven als strategische Reserve konserviert abgestellt, und aufgrund von Problemen bei der Energieversorgung wurde der Dampfbetrieb bis etwa 1999 regional immer wieder aufgenommen.

Als erste europäische Staatsbahngesellschaft beendeten die Niederländischen Staatsbahnen den Dampfbetrieb im Jahre 1958.

1967 fuhr der letzte offizielle SBB-Dampfzug in der Schweiz. Einzig die Brienz-Rothorn-Bahn setzt heute weiterhin auf Dampflokomotiven und beschafft sogar neu konstruierte.

Die Deutsche Bundesbahn in Westdeutschland stellte 1977 den Dampflokomotiv-Betrieb ein; letzte Einsatzbetriebswerke (BW) waren: BW Emden und BW Rheine, BW Emden mit den tatsächlich letzten Fahrten am 26. Oktober 1977 mit zwei Lokomotiven der Reihe 043, deren letzte, 043 903, um 16.04 Uhr abgestellt wurde. Bei der Deutschen Reichsbahn in der DDR endete ihr Einsatz auf Normalspur am 29. Oktober 1988 beim Bw Halberstadt mit einer Lok der Reihe 50.35.

Bei den Österreichischen Bundesbahnen waren Dampflokomotiven regulär bis zum Jahr 2005 im Einsatz. Der Dampfbetrieb endete allerdings auf unkonventionelle Weise, nämlich durch den Verkauf der letzten Dampfstrecke - der Schafbergbahn - an die Salzburg AG.

Außerhalb Europas und der USA wurden die Dampflokomotiven noch länger betrieben und zumeist durch Diesellokomotiven ersetzt. Teilweise sind sie heute 2006 noch im Einsatz, wie z. B. auf den Staatsbahnsystemen Myanmar und Zimbabwe sowie auf Industrie- und Landwirtschaftsbahnen in Kuba, Indonesien, Serbien, Rumänien, Nordkorea und der Volksrepublik China.

Dampftraktion aktuell

Neue leichtölbefeuerte Dampflok der Brienz-Rothorn-Bahn

Während in den 1970er Jahren das Kapitel der Dampflokomotiven abgeschlossen schien, lieferte die Schweizer Maschinenfabrik SLM (Dampflokomotivfabrik heute DLM) 1992 drei neue leichtölgefeuerte Dampflokomotiven für Schmalspurbahnen aus. Die Fahrzeuge werden dort eingesetzt, wo Dampflokomotiven aufgrund der höheren Attraktivität für Touristen bei vergleichbaren Betriebskosten deutlich höhere Einnahmen versprechen. 1996 konnten drei weitere Lokomotiven verkauft werden, seither sind keine Verkäufe mehr bekannt. Im Sommer 2004 verkaufte die Transports Montreux-Vevey-Riviera ihre 1992 gekaufte Lok mangels Rentabilität an die Brienz-Rothorn-Bahn, welche bereits mehrere DLM-Maschinen besitzt.

Einen fahrplanmäßigen Betrieb mit Dampflokomotiven gibt es im deutschsprachigen Raum noch bei folgenden Bahngesellschaften, allesamt schmalspurig:

Eine Liste der bei der Deutschen Bundesbahn verwendeten Dampflokomotiven befindet sich hier. In Deutschland sind etwa 135 betriebsfähige normalspurige Dampflokomotiven erhalten. Viele weitere Exemplare finden sich nicht betriebsfähig in Museen oder als Denkmäler aufgestellt.

Die Lokomotive mit der Baureihennummer 18 201 im Eigentum der privaten Gesellschaft „Dampf Plus“ mit einer Höchstgeschwindigkeit von 180 km/h ist sie die schnellste betriebsbereite Dampflok. Ihr Schicksal als betriebsfähige Museumslok ist derzeit in der Schwebe.

In Europa werden nur noch in Polen Regelspur-Dampflokomotiven im Plandienst eingesetzt, nämlich vom Bahnbetriebswerk Wolsztyn (Wollstein). Zur Zeit stehen täglich drei Maschinen im Dienst. Aufgrund der großen Attraktivität für Touristen wird der Betrieb bis heute aufrechterhalten.

In einigen Nachfolgestaaten von Jugoslawiens werden Dampflokomotiven noch innerbetrieblich auf Werkbahnen eingesetzt, in Bosnien-Herzegowina auch noch auf Schmalspur.

Bis jetzt (1/2006) haben sich auch in der Volksrepublik China noch Dampflokomotiven gehalten. Grund sind die günstige Kohle-Versorgung, die einfache Instandhaltung sowie die noch vorhandene Infrastruktur für die Dampflokomotiven. Zudem sind die vorhandenen Dampflokomotiven zumeist erst einige Jahre alt. Allerdings plant China die völlige Abschaffung der Dampftraktion teils aus Prestigegründen bis zum Olympiajahr 2008. Der letzte planmäßige Personenzug mit Dampftraktion auf einer Hauptstrecke in China fuhr am 10. Dezember 2005 auf der Ji - Tong - Linie.

Heute ist ein regulärer Betrieb von Dampflokomotiven außerhalb Europas aus China, Myanmar und Indien bekannt; Zimbabwe hat den Dampfbetrieb im Jahre 2005 wiederaufgenommen. In Kuba und Indonesien werden zur Zuckerrohrernte auf Werkbahnen noch Dampfloks eingesetzt. In Paraguay gibt es gegentlich noch Verschubdienst mit Dampf, in Argentinien verkehren mehrere Schmalspurbahnen (nach europäischen Verständnis eher Touristikbahnen) mit Dampf.

Heizlokomotive

Mehrere in Deutschland noch eingesetzte (Museums-)Lokomotiven haben nur überlebt, weil sie als sogenannte Heizlokomotive eingesetzt waren. Diese Lokomotiven waren normalerweise nicht mehr fahrbereit, sondern wurden als stationäre Heizanlagen für größere Gebäudekomplexe, z.B. Bahngebäude, Sowjet-Kasernen (DDR) usw. eingesetzt. Die gültigen Kesseluntersuchungen mussten natürlich vorhanden sein.

Rezeption in Kunst und Kultur

Filme

  • Der Zug (1963) mit Burt Lancaster
  • Der General (1927) mit Buster Keaton
  • El último tren / Deutscher Titel „Der letzte Zug“, Spielfilm, Argentinien/Spanien/Uruguay 2002, Regie: Diego Arsuaga
  • The Adventurers / Deutscher Titel „Die Playboys“, Spielfilm, USA/Kolumbien 1970, Regie: Lewis Gilbert
  • The Great Locomotive Chase, Spielfilm, Produktion: Walt Disney, USA 1956
  • The Titfield Thunderbolt / Deutscher Titel „Titfield-Express“ Regie Charles Crichton, Großbritannien 1952
  • Kurt Pierson: Oldtimer im Film. In: Lok-Magazin. München 1970,40 (Februar), S.69-73. ISSN 0458-1822

Bildende Kunst


"La Tortuga"

"La Tortuga", Skulptur von Wolf Vostell vor dem Theater Marl

„La Tortuga“ ist der Name einer Skulptur des Aktionskünstlers Wolf Vostell. Er positionierte eine defekte Güterzug-Dampflokomotive, hilflos auf dem Rücken liegend wie eine Schildkröte, vor dem Eingang des Theaters in Marl, eine Lokomotive des zweiten Weltkriegs, die Material an die Fronten und Menschen in die Konzentrationsläger brachte.

Siehe auch

Literatur

  • Rudolf Heym: Wie funktioniert sie eigentlich, die Dampflok? GeraMond, München 2004, ISBN 3765472557
  • Dirk Endisch: So funktioniert die Dampflok. Transpress, Stuttgart 2003, ISBN 3613712210
  • Siegfried Bufe: Abschied von der Dampflok. Eisenbahn-Kurier, Freiburg i. Brsg. 1978, 1985, ISBN 3882555009
  • Erhard Born: 2 C 1. Franckh, Stuttgart 1965.
  • Erhard Born, Herrmann Maey: Die Regel-Dampflokomotiven der deutschen Reichsbahn und der deutschen Bundesbahn. Verkehrswissenschaftl. Lehrmittelges, Frankfurt M 1953.
  • Wolfgang Messerschmidt: Lokomotiven der Maschinenfabrik Esslingen 1841 bis 1966. Ein Kapitel internationalen Lokomotivbaues. A. Steiger, Solingen 1984, ISBN 3921564670
  • Wolfgang Messerschmidt: Taschenbuch Deutsche Lokomotivfabriken. Ihre Geschichte, ihre Lokomotiven, ihre Konstrukteure. Kosmos, Stuttgart 1977, ISBN 3440044629
  • Joe G. Collias: Big Boy und Co. Das Ende der Dampflok- Ära in den USA. Heel-Vlg., Königswinter 1995, ISBN 3893654313
  • Arnold Haas: Dampflokomotiven in Nordamerika. USA und Kanada. Franckh, Stuttgart 1978, ISBN 3-440-04493-9
  • George H. Drury: Guide to North American Steam Locomotives. History and development of steam power since 1900. Railroad reference series. no. 8. Kalmbach Books, Waukesha 1993, ³1999, ISBN 0-89024-206-2
  • Leopold Niederstrasser: Leitfaden für den Dampflokomotivdienst. ISBN 3-921700-26-4
  • Autorenkollektiv: Die Dampflokomotive. Transpress, Berlin 1965, 1993. ISBN 3-344-70791-4
  • Adolph Giesl-Gieslingen: Anatomie der Dampflokomotive international. Slezak, Wien 2004, ISBN 3-85416-194-8
  • K-E. Maedel, A. Gottwald: Deutsche Dampflokomotiven. Transpress, Berlin 1994, 1999. ISBN 3-344-70912-7
  • C. Hamilton Ellis: Die Welt der Eisenbahn. Die Geschichte der Lokomotiven, Wagen und Züge aus aller Welt. Stuttgart: Franckh'sche Verlagshandlung, 1972. ISBN 3-440-03571-9 (abgesehen von einem kurzen Ausblick auf Loks mit Diesel-hydraulischem Antrieb ein Überblick zur Entwicklung der Dampfloks; wiss. Beratung durch Marie-Anne Asselberghs, Niederlande, Direktorin des Niederländischen Eisenbahnmuseums in Utrecht sowie weitere internationale Eisenbahnexperten aus Schweden, Italien, USA, Japan und Deutschland)
  • Bundesbahndirektion Hannover: 1843-1983. 140 Jahre Eisenbahndirektion Hannover. Hannover o. J. (1983). Seite 67-71.

Weblinks

Commons: Dampflokomotive – Album mit Bildern, Videos und Audiodateien