Dies ist ein als lesenswert ausgezeichneter Artikel.

Methode der kleinsten Quadrate

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 27. August 2009 um 07:09 Uhr durch Achim Raschka (Diskussion | Beiträge) ({{Lesenswert}}). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen
Messpunkte und deren Abstand zu einer nach der Methode der kleinsten Quadrate bestimmten Funktion. Hier wurde eine logistische Funktion als Modellkurve gewählt.

Die Methode der kleinsten Quadrate (englisch: method of least squares) ist das mathematische Standardverfahren zur Ausgleichungsrechnung. Dabei wird zu einer Datenpunktwolke eine Kurve gesucht, die möglichst nahe an den Datenpunkten verläuft. Die Daten können physikalische Messwerte, wirtschaftliche Größen oder Ähnliches repräsentieren, während die Kurve aus einer parameterabhängigen problemangepassten Familie von Funktionen stammt. Die Methode der kleinsten Quadrate besteht dann darin, die Kurvenparameter so zu bestimmen, dass die Summe der quadratischen Abweichungen der Kurve von den beobachteten Punkten minimiert wird. Die Abweichungen werden Residuen genannt.

In der Beispielgrafik sind Datenpunkte eingetragen. In einem ersten Schritt wird eine Funktionenklasse ausgewählt, die zu dem Problem und den Daten passen sollte, hier eine logistische Funktion. Deren Parameter werden nun so bestimmt, dass die Summe der Quadrate der Abweichungen e der Beobachtungen y zu den Werten der Funktion minimiert wird. In der Grafik ist die Abweichung e an der Stelle t als senkrechter Abstand der Beobachtung y von der Kurve zu erkennen.

In der Stochastik wird die Methode der kleinsten Quadrate meistens als Schätzmethode in der Regressionsanalyse benutzt, wo sie auch als Kleinste-Quadrate-Schätzung bezeichnet wird. Angewandt als Systemidentifikation ist die Methode der kleinsten Quadrate in Verbindung mit Modellversuchen für Ingenieure ein Ausweg aus der paradoxen Situation, Modellparameter für unbekannte Gesetzmäßigkeiten zu bestimmen.

Geschichtliches

Carl Friedrich Gauß

Am Neujahrstag 1801 entdeckte der italienische Astronom Giuseppe Piazzi den Asteroiden Ceres. 40 Tage lang konnte er die Bahn verfolgen, dann verschwand Ceres hinter der Sonne. Im Laufe des Jahres versuchten viele Wissenschaftler erfolglos, anhand von Piazzis Beobachtungen die Bahn zu berechnen – unter der Annahme einer Kreisbahn, denn nur für solche konnten damals die Bahnelemente aus beobachteten Himmelspositionen mathematisch ermittelt werden. Der 24-jährige Gauß hingegen konnte auch elliptische Bahnen aus drei Einzelbeobachtungen berechnen. Da aber deutlich mehr Bahnpunkte vorlagen, wendete er seine Methode der kleinsten Quadrate an, um so die Genauigkeit zu erhöhen. Als Franz Xaver von Zach und Heinrich Wilhelm Olbers im Dezember 1801 den Kleinplaneten genau an dem von Gauß vorhergesagten Ort wiederfanden, war das nicht nur ein großer Erfolg für Gauß’ Methode: Piazzis Ruf, der aufgrund seiner nicht zu einer Kreisbahn passen wollenden Bahnpunkte stark gelitten hatte, war ebenfalls wieder hergestellt.[1]

Piazzis Beobachtungen veröffentlicht in der Monatlichen Correspondenz vom September 1801

Die Grundlagen seines Verfahrens hatte er schon 1795 im Alter von 18 Jahren entwickelt. Basis war eine Idee von Pierre-Simon Laplace, die Beträge von Fehlern aufzusummieren, so dass sich die Fehler zu Null addieren. Gauß nahm statt dessen die Fehlerquadrate und konnte die künstliche Zusatzanforderung an die Fehler weglassen. Unabhängig davon entwickelte der Franzose Adrien-Marie Legendre dieselbe Methode erstmalig im Jahre 1806 am Schluss eines kleinen Werkes über die Berechnung der Kometenbahnen und veröffentlichte eine zweite Abhandlung darüber im Jahr 1810. Von ihm stammt der Name méthode des moindres carrés (Methode der kleinsten Quadrate).

1809 publizierte Gauß dann im zweiten Band seines himmelsmechanischen Werkes Theoria Motus Corporum Coelestium in sectionibus conicis solem ambientium sein Verfahren, inklusive der Normalgleichungen und des Gaußschen Eliminationsverfahrens[2]. Dabei erwähnte er, dass er es schon vor Legendre entdeckt und benutze habe, was zu einem Prioritätsstreit zwischen den beiden führte. Die Methode der kleinsten Quadrate wurde nun schnell das Standardverfahren zur Behandlung von astronomischen oder geodätischen Datensätzen.

Gauß benutzte dann das Verfahren intensiv bei seiner Vermessung des Königreichs Hannover durch Triangulation. 1821 und 1823 erschienen die Werke Theoria Combinationis, in denen Gauß eine Begründung liefern konnte, wieso sein Verfahren im Vergleich zu den anderen so erfolgreich war: Die Methode der kleinsten Quadrate ist in einer breiten Hinsicht optimal, also besser als andere Methoden. Die genaue Aussage ist als der Satz von Gauß-Markow bekannt, da die Arbeit von Gauß wenig Beachtung fand und schließlich im 20. Jahrhundert von Andrei Andrejewitsch Markow wiederentdeckt und bekannt gemacht wurde. Theoria Combinationis enthält ferner wesentliche Fortschritte beim effizienten Lösen der auftretenden linearen Gleichungssysteme, wie das Gauß-Seidel-Verfahren und die LR-Zerlegung[3].

Der französische Vermessungsoffizier André-Louis Cholesky entwickelte während des Ersten Weltkrieges die Cholesky-Zerlegung, die gegenüber den Lösungsverfahren von Gauß nochmal einen erheblichen Effizienzgewinn darstellte. In den 1960er Jahren entwickelte Gene Golub die Idee, die auftretenden linearen Gleichungssysteme mittels QR-Zerlegung zu lösen.

Das Verfahren

Man betrachtet eine abhängige Größe , die von einer Variablen oder auch von mehreren Variablen beeinflusst wird. So hängt die Dehnung einer Feder nur von der aufgebrachten Kraft ab, der Gewinn eines Unternehmens jedoch von mehreren Faktoren wie Umsatz, den verschiedenen Kosten oder dem Eigenkapital. Zur Vereinfachung der Notation wird im Folgenden die Darstellung auf eine Variable beschränkt. Der Zusammenhang zwischen und den Variablen wird über eine Modellfunktion , beispielsweise einer Parabel oder einer Exponentialfunktion

,

die von sowie von Funktionsparametern abhängt, modelliert. Diese Funktion entstammt entweder der Kenntnis des Anwenders; im Falle der Feder ist dies etwa das Hooksche Gesetz und damit eine lineare Funktion mit der Federkonstanten als einzigem Parameter. In schwierigeren Fällen, wie dem des Unternehmens kann der Wahl des Funktionstyps ein beliebig komplexer Modellierungsprozess vorausgehen, eventuell müssen auch verschiedene Modellfunktionen angesetzt werden und die Ergebnisse verglichen werden.

Die Parameter dienen zur Anpassung des gewählten Funktionstyps an die beobachteten Werte . Ziel ist es nun, die Parameter so zu wählen, dass die Modellfunktion die Daten bestmöglich approximiert.

Um Informationen über die Parameter und damit die konkrete Art des Zusammenhangs zu erhalten, werden zu jeweils n gegebenen Werten der unabhängigen Variablen entsprechende Beobachtungswerte erhoben.

Gauß und Legendre hatten die Idee, Verteilungsannahmen über die Messfehler dieser Beobachtungswerte zu machen. Sie sollten im Durchschnitt Null sein, jeder Messfehler sollte die gleiche Varianz haben und von jedem anderen Messfehler stochastisch unabhängig sein. Man verlangt damit, dass in den Messfehlern keinerlei systematische Information mehr steckt, sie also rein zufällig um Null schwanken. Außerdem sollten die Messfehler normalverteilt sein, was zum einen wahrscheinlichkeitstheoretische Vorteile hat und zum anderen garantiert, dass Ausreißer in so gut wie ausgeschlossen sind.

Um dies zu erfüllen ist es notwendig, deutlich mehr Datenpunkte als Parameter vorliegen, es ist also .

Das Kriterium zur Bestimmung der Approximation sollte dieses also berücksichtigen und so gewählt werden, dass große Abweichungen der Modellfunktion von den Daten stärker bestraft werden als kleine. Es sollen diejenigen Parameter ausgewählt werden, bei denen die Summe der quadrierten Residuen zwischen den entsprechenden Werten der Modellkurve und den Daten (Quadratsumme der Residuen oder auch Fehlerquadratsumme) minimal wird im Vergleich zu anderen Wahlen der Parameter, in Formelschreibweise

mit . Äquivalent geht es darum, die euklidische Norm des Differenzvektors zu minimieren:

mit . Wie genau dieses Minimierungsproblem gelöst wird, hängt von der Art der Modellfunktion ab. Häufig kann man mit Hilfe eines Streudiagramms zwischen und y schon Rückschlüsse auf den Funktionstyp ziehen.

Lineare Modellfunktion

Der zweidimensionale Fall

Ein Spezialfall der Modellfunktion ist die lineare Form, bei der die Parameter linear eingehen. Der einfachste Ansatz ist hier

Man erhält in Matrixschreibweise

Für die resultierende Ausgleichsgerade dieses einfachen, aber relevanten Beispiels lassen sich die Lösungen für die Parameter direkt angeben als

und

mit als arithmetischem Mittel der -Werte, entsprechend. Die Lösung für kann mit Hilfe des Verschiebungssatzes auch als

angegeben werden.

Beispiel

Streudiagramm von Längen und Breiten von 10 zufällig ausgewählten Kriegsschiffen

Folgendes Beispiel soll das Approximieren der linearen Funktion zeigen. Es wurden zufällig 10 Kriegsschiffe ausgewählt und bezüglich mehrerer Merkmale darunter Länge (m) und Breite (m) analysiert. Es soll untersucht werden, ob die Breite eines Kriegsschiffs möglicherweise durch die Länge erklärt werden kann.

Das Streudiagramm zeigt, dass zwischen Länge und Breite eines Schiffs offensichtlich ein ausgeprägter linearer Zusammenhang besteht.

Es soll nun nach der Methode der kleinsten Quadrate eine Ausgleichsgerade errechnet werden. In der folgenden Tabelle sind die Daten zusammen mit den Zwischenergebnissen aufgeführt.

Nummer Länge (m) Breite (m) ti − t yi − y
i ti yi ti* yi* ti*yi* ti*ti* yi*yi*
1 208 21,6 40,2 3,19 128,238 1616,04 10,1761
2 152 15,5 −15,8 −2,91 45,978 249,64 8,4681
3 113 10,4 −54,8 −8,01 438,948 3003,04 64,1601
4 227 31,0 59,2 12,59 745,328 3504,64 158,5081
5 137 13,0 −30,8 −5,41 166,628 948,64 29,2681
6 238 32,4 70,2 13,99 982,098 4928,04 195,7201
7 178 19,0 10,2 0,59 6,018 104,04 0,3481
8 104 10,4 −63,8 −8,01 511,038 4070,44 64,1601
9 191 19,0 23,2 0,59 13,688 538,24 0,3481
10 130 11,8 −37,8 −6,61 249,858 1428,84 43,6921
Σ 1678 184,1 0,0 0,00 3287,820 20391,60 574,8490

Man erhält nun analog zum oben angegebenen Fall zunächst

und entsprechend

.

Damit bestimmt man x1 als

so dass man sagen könnte, mit jedem Meter Länge wächst ein Kriegsschiff im Durchschnitt etwa 16 Zentimeter in die Breite. Das Absolutglied x0 ergibt sich als

Die Anpassung der Punkte ist recht gut, es werden etwa 92 Prozent der Information in Breite mit Hilfe des Merkmals Länge erklärt.

Der allgemeine lineare Fall

Datensatz mit approximierenden Polynomen

Allgemeiner als im obigen Beispiel ist ein Ansatz

bei dem die Parameter weiterhin linear eingehen. Die Funktionen hängen nur von ab und können beliebig zur Anpassung an das Problem gewählt werden. Damit ergibt sich analog zu oben wieder das Problem

mit , und . Häufig werden etwa Ausgleichspolynome der Form

eingesetzt.

Beispiel einer polynomialen Ausgleichskurve

Tabelle T1: Ergebnisse der Kleinst-Quadrate-Schätzung mit 4 gegebenen Datenvariablen

Als Ergebnisse der Mikrozensus-Befragung im Mai 2003 durch das statistische Bundesamt sind die durchschnittlichen Gewichte von Männern nach Altersklassen gegeben (Quelle: Statistisches Bundesamt, Wiesbaden 2004). Für die Analyse wurden die Altersklassen durch die Klassenmitten ersetzt. Es soll die Abhängigkeit der Variablen Gewicht (y) von der Variablen Alter (t) analysiert werden.

Das Streudiagramm lässt auf eine annähernd parabolische Beziehung zwischen t und y schließen, welche sich häufig gut durch ein Polynom annähern lässt. Es wird ein polynomialer Ansatz der Form

Tabelle T2: Ergebnisse der Kleinst-Quadrate-Schätzung mit 3 gegebenen Datenvariablen

versucht. Eine Anpassungsrechnung mit Hilfe des Statistik-Programms Minitab ergab die (ins Deutsche übersetzte) Tabelle T1. Das Bestimmtheitsmaß (R2) beträgt 99,8 %, man könnte also sagen, dass 99,8 % der Information von y durch die Daten erklärt werden. Die Daten von sind allerdings hochkorreliert. Es wurde daher und damit der Modellparameter aus dem Modell entfernt. Die Ergebnisse ohne sind in der (ins Deutsch übersetzten) Tabelle T2 aufgeführt. Das Bestimmtheitsmaß ist lediglich auf 98,6 % gesunken, also hat nur einen zusätzlichen Beitrag zur Erklärung von y von 1,3 %. Das Streudiagramm mit den beobachteten und geschätzten y-Werten zeigt, dass die Anpassung gelungen ist.

Streudiagramm: Durchschnittliches Gewicht von Männern nach Alter
Streudiagramm von y und geschätztem y

Mehrere Variablen

Besitzt die Modellfunktion statt nur einer Variablen mehrere unabhängige Modellvariablen , erhält man eine lineare Funktion der Form

die auf das lineare Gleichungssystem

führt. Indem man die zur Datenmatrix , die Parameter zum Parametervektor und die Beobachtungen zum Vektor zusammenfasst, kann man das lineare Gleichungssystem in Matrixform darstellen.

bzw. .

Der kleinste-Quadrate-Ansatz führt dann wieder wie oben auf ein lineares Ausgleichsproblem der Form

Lösung des Minimierungsproblems

Das Minimierungsproblem hat immer eine Lösung. Hat die Matrix vollen Rang, so ist sie sogar eindeutig. Die partiellen Ableitungen bezüglich der und Nullsetzen derselben zum Bestimmen des Minimums ergeben ein lineares System von Normalgleichungen (auch Normalengleichungen)

das bei Regularität der -Matrix auf der linken Seite eindeutig lösbar ist. Ferner hat die Systemmatrix die Eigenschaft, positiv definit zu sein, ihre Eigenwerte sind also alle positiv. Zusammen mit der Symmetrie von kann dies beim Einsatz von numerischen Verfahren zur Lösung ausgenutzt werden: beispielsweise mit der Cholesky-Zerlegung oder dem CG-Verfahren. Da beide Methoden von der Kondition der Matrix stark beeinflusst werden, ist dies manchmal keine empfehlenswerte Herangehensweise: Ist schon A schlecht konditioniert, so ist quadratisch schlecht konditioniert. Dies führt dazu, dass Rundungsfehler so weit verstärkt werden können, dass sie das Ergebnis unbrauchbar machen.

Eine stabilere Alternative bietet die QR-Zerlegung mit Householdertransformationen oder Givens-Rotationen, ausgehend vom ursprünglichen Minimierungsproblem und nicht den Normalgleichungen. Grundidee ist hierbei, dass orthogonale Transformationen die euklidische Norm eines Vektors nicht verändern. Damit ist

für jede orthogonale Matrix Q. Zur Lösung des Problems kann also eine QR-Zerlegung von A berechnet werden, wobei man die rechte Seite direkt mittransformiert. Dies führt auf eine Form

mit wobei eine rechte obere Dreiecksmatrix ist. Die Lösung des Problems ergibt sich somit durch die Lösung des Gleichungssystems

Die Norm des Minimums ergibt sich dann aus den restlichen Komponenten der transformierten rechten Seite da die dazugehörigen Gleichungen aufgrund der Nullzeilen in nie erfüllt werden können.

Ferner lässt sich das Minimierungsproblem mit einer Singulärwertzerlegung gut analysieren. Diese motivierte auch den Ausdruck der Pseudoinversen, einer Verallgemeinerung der normalen Inversen einer Matrix. Diese liefert dann eine Sichtweise auf nichtquadratische lineare Gleichungssysteme, die einen nicht stochastisch, sondern algebraisch motivierten Lösungsbegriff erlaubt.

In der statistischen Regressionsanalyse spricht man bei mehreren gegebenen Variablen von multipler Regression. Der Ansatz ist auch als OLS (ordinary least squares) bekannt, im Gegensatz zu GLS (generalised least squares), dem verallgemeinerten Regressionsmodell bei Residuen, die von der Verteilungsannahme wie Unkorreliertheit und Homoskedastie abweichen. Dagegen liegen bei multivariater Regression für jede Beobachtung viele -Werte vor, so dass statt eines Vektors eine -Matrix vorliegt. Die linearen Regressionsmodelle sind in der Statistik wahrscheinlichkeitstheoretisch intensiv erforscht worden. Besonders in der Ökonometrie werden beispielsweise komplexe rekursiv definierte lineare Strukturgleichungen analysiert, um volkswirtschaftliche Systeme zu modellieren.

Probleme mit Nebenbedingungen

Häufig sind Zusatzinformationen an die Parameter bekannt, die durch Nebenbedingungen formuliert werden, die dann in Gleichungs- oder Ungleichungsform vorliegen. Gleichungen tauchen beispielsweise auf, wenn bestimmte Datenpunkte interpoliert werden sollen. Ungleichungen tauchen häufiger auf, in der Regel in der Form von Intervallen für einzelne Parameter. Im Einführungsbeispiel wurde die Federkonstante erwähnt, diese ist immer größer Null und kann für den konkret betrachteten Fall immer nach oben abgeschätzt werden.

Im Gleichungsfall können diese bei einem sinnvoll gestellten Problem genutzt werden, um das ursprüngliche Minimierungsproblem in eines niedrigerer Dimension umzuformen, dessen Lösung die Nebenbedingungen automatisch erfüllt.

Schwieriger ist der Ungleichungsfall. Hier ergibt sich bei linearen Ungleichungen das Problem

mit ,

wobei die Ungleichungen komponentenweise gemeint sind. Dieses Problem ist als konvexes Optimierungsproblem eindeutig lösbar und kann beispielsweise mit Methoden zur Lösung solcher angegangen werden.

Quadratische Ungleichungen ergeben sich beispielsweise bei der Nutzung einer Tychonow-Regularisierung zur Lösung von Integralgleichungen. Die Lösbarkeit ist hier nicht immer gegeben. Die numerische Lösung kann beispielsweise mit speziellen QR-Zerlegungen erfolgen.

Nichtlineare Modellfunktionen

Mit dem Aufkommen leistungsfähiger Rechner gewinnt insbesondere die nichtlineare Regression an Bedeutung. Hierbei gehen die Parameter nichtlinear in die Funktion ein. Nichtlineare Modellierung ermöglicht im Prinzip die Anpassung von Daten an jede Gleichung der Form . Da diese Gleichungen Kurven definieren, werden die Begriffe nichtlineare Regression und „curve fitting“ zumeist synonym gebraucht.

Manche nichtlineare Probleme lassen sich durch geeignete Substitution in lineare überführen und sich dann wie oben lösen. Ein multiplikatives Modell von der Form

bei dem auch die Residuen mit variieren, lässt sich beispielsweise durch Logarithmieren in ein additives System überführen. Dessen Parameter können dann berechnet werden. Dieser Ansatz findet unter Anderem in der Wachstumstheorie Anwendung.

Im Allgemeinen ergibt sich bei nichtlinearen Modellfunktionen ein Problem der Form

mit einer nichtlinearen Funktion . Partielle Differentiation ergibt dann ein System von Normalgleichungen, das nicht mehr analytisch gelöst werden kann. Eine numerische Lösung kann hier iterativ mit dem Gauß-Newton-Verfahren erfolgen. Jenes hat allerdings das Problem, dass die Konvergenz des Verfahrens nicht gesichert ist.

Aktuelle Programme arbeiten häufig mit einer Variante, dem Levenberg-Marquardt-Algorithmus. Bei diesem Verfahren ist zwar die Konvergenz ebenfalls nicht gesichert, jedoch wird durch eine Regularisierung die Monotonie der Näherungsfolge garantiert. Zudem ist das Verfahren bei größerer Abweichung der Schätzwerte toleranter als die Ursprungsmethode. Beide Verfahren sind mit dem Newton-Verfahren verwandt und konvergieren meist quadratisch, in jedem Schritt verdoppelt sich also die Zahl der korrekten Nachkommastellen.

Wenn die Differenziation auf Grund der Komplexität der Zielfunktion zu aufwändig ist, stehen eine Reihe anderer Verfahren als Ausweichlösung zu Verfügung, die keine Ableitungen benötigen, siehe bei Methoden der lokalen nichtlinearen Optimierung.

Beispiel aus der Enzymkinetik einer nicht linearisierbaren Modellfunktion

Ein Beispiel für Regressionsmodelle, die voll nichtlinear sind, ist die Enzymkinetik. Hier ist zu fordern, dass nur y (Reaktionsgeschwindigkeit) und nicht x (Substratkonzentration) einem Fehler unterliegt und damit x als Variable genutzt werden kann. Die Lineweaver-Burk-Beziehung ist zwar eine algebraisch korrekte Umformung der Michaelis-Menten-Gleichung v = Vmax x [S] / (Km + [S]), ihre Anwendung liefert aber nur korrekte Ergebnisse, wenn die Messwerte fehlerfrei sind. Dies ergibt sich aus der Tatsache, dass sich die Realität nur mit einer erweiterten Michaelis-Menten-Beziehung

mit als Fehlerparameter, beschreiben lässt. Diese Gleichung lässt sich nicht mehr linearisieren, also muss hier die Lösung iterativ ermittelt werden.

Anforderungen an die Daten

Die Normalverteilungsannahme für die abhängige Variable ist nicht zwingend notwendig. Es sollen lediglich keine Ausreißer in den Messwerten vorliegen, da diese das Schätzergebnis verzerren. Außerdem ist Multikollinearität zwischen den zu schätzenden Parametern ungünstig, da diese numerische Probleme verursacht. Im übrigen können auch Regressoren, die weit von den anderen entfernt liegen, die Ergebnisse der Ausgleichsrechnung stark beeinflussen. Man spricht hier von Werten mit großer Hebelkraft (High Leverage Value).

Multikollinearität

Multikollinearität entsteht, wenn die Messreihen zweier gegebener Variablen ti und tj sehr hoch korreliert sind, also fast linear abhängig sind. Im linearen Fall bedeutet dies, dass die Determinante der Normalgleichungsmatrix sehr klein und die Norm der Inversen umgekehrt sehr groß, die Kondition von ist also stark beeinträchtigt. Die Normalgleichungen sind dann numerisch schwer zu lösen. Die Lösungswerte können unplausibel groß werden und bereits kleine Änderungen in den Beobachtungen bewirken große Änderungen in den Schätzwerten.

Ausreißer

Ausreißer von y:
Der Wert zieht die Gerade nach oben

Als Ausreißer sind Datenwerte definiert, die „nicht in eine Messreihe passen“. Diese Werte beeinflussen die Berechnung der Parameter stark und verfälschen das Ergebnis. Um dies zu vermeiden, müssen die Daten auf fehlerhafte Beobachtungen untersucht werden. Die entdeckten Ausreißer können beispielsweise aus der Messreihe ausgeschieden werden oder es sind alternative ausreißerresistente Berechnungsverfahren wie gewichtete Regression oder das Drei-Gruppen-Verfahren anzuwenden.

Im ersten Fall wird nach der ersten Berechnung der Schätzwerte durch statistische Tests geprüft, ob Ausreißer in einzelnen Messwerten vorliegen. Diese Messwerte werden dann ausgeschieden und die Schätzwerte erneut berechnet. Dieses Verfahren eignet sich dann, wenn nur wenige Ausreißer vorliegen.

Bei der gewichteten Regression werden die abhängigen Variablen in Abhängigkeit von ihren Residuen gewichtet. Ausreißer, d. h. Beobachtungen mit großen Residuen, erhalten ein geringes Gewicht, das je nach Größe des Residuums abgestuft sein kann. Beim Algorithmus nach Mosteller und Tukey (1977), der als „biweighting“ bezeichnet wird, werden unproblematische Werte mit 1 und Ausreißer mit 0 gewichtet, was die Unterdrückung des Ausreißers bedingt. Bei der gewichteten Regression sind in der Regel mehrere Iterationsschritte erforderlich, bis sich die Menge der erkannten Ausreißer nicht mehr ändert.

Verallgemeinerte Kleinste-Quadrate-Modelle

Hauptartikel: Regressionsanalyse.

Weicht man die starken Anforderungen im Verfahren an die Beobachtungsfehler auf, erhält man so genannte verallgemeinerte Kleinste-Quadrate-Ansätze. Wichtige Spezialfälle haben dann wieder eigene Namen, etwa die gewichteten kleinsten Quadrate, bei denen die Fehler zwar weiter als unkorreliert angenommen werden, aber nicht mehr von gleicher Varianz. Dies führt auf ein Problem der Form

wobei D eine Diagonalmatrix ist. Variieren die Varianzen stark, so haben die entsprechenden Normalgleichungen eine sehr große Kondition, weswegen das Problem direkt gelöst werden sollte.

Nimmt man noch weiter an, dass die Fehler in den Messdaten auch in der Modellfunktion berücksichtigt werden sollten, ergeben sich die "totalen kleinsten Quadrate" in der Form

wobei der Fehler im Modell und der Fehler in den Daten ist.

Schließlich gibt es noch die Möglichkeit, keine Normalverteilung zugrunde zu legen. Dies entspricht beispielsweise der Minimierung nicht in der euklidischen Norm, sondern der 1-Norm.

Literatur

  • Åke Björk: Numerical Methods for Least Squares Problems. SIAM, Philadelphia 1996, ISBN 0898713609
  • Walter Großmann: Grundzüge der Ausgleichsrechnung. Springer Verlag, Berlin Heidelberg New York 1969 (3. erw. Aufl.), ISBN 3540044957
  • Richard J. Hanson, Charles L. Lawson: Solving least squares problems. SIAM, Philadelphia 1995, ISBN 0898713560
  • Frederick Mosteller, John W. Tukey: Data Analysis and Regression – a second course in statistics. Addison-Wesley, Reading MA 1977, ISBN 020104854X
  • Gerhard Opfer: Numerische Mathematik für Anfänger. Eine Einführung für Mathematiker, Ingenieure und Informatiker. Vieweg, Braunschweig 2002 (4. Aufl.), ISBN 3528372656
  • Peter Schönfeld: Methoden der Ökonometrie. 2 Bd. Vahlen, Berlin-Frankfurt 1969–1971.
  • Eberhard Zeidler (Hrsg.): Taschenbuch der Mathematik. Begründet v. I.N. Bronstein, K.A. Semendjajew. Teubner, Stuttgart-Leipzig-Wiesbaden 2003, ISBN 3817120052

Weblinks

Einzelnachweise

  1. Vgl. S. 436 von Moritz CantorGauß: Karl Friedrich G. In: Allgemeine Deutsche Biographie (ADB). Band 8, Duncker & Humblot, Leipzig 1878, S. 430–445.
  2. http://www-history.mcs.st-andrews.ac.uk/HistTopics/Matrices_and_determinants.html
  3. Pete Stewart, 21. Juni 1991: http://www.netlib.org/na-digest-html/91/v91n26.html#4