The Kurosch subgroup  theorem , named after Alexander Gennadjewitsch Kurosch  , is a mathematical theorem from the field of group theory  . It describes the structure of subgroups of   free products  and represents a generalization of the Nielsen-Schreier theorem  .
Formulation of the sentence  
It is the free product of  the groups and a subgroup. Then
  
    
      
        G 
        = 
        
          
            ∗ 
            
              α 
              ∈ 
              A. 
             
           
         
        
          G 
          
            α 
           
         
       
     
    {\ displaystyle G = {\ underset {\ alpha \ in A} {*}} G _ {\ alpha}} 
   
 
  
    
      
        
          G 
          
            α 
           
         
        , 
        α 
        ∈ 
        A. 
       
     
    {\ displaystyle G _ {\ alpha}, \ alpha \ in A} 
   
 
  
    
      
        H 
        ≤ 
        G 
       
     
    {\ displaystyle H \ leq G} 
   
  
  
    
      
        H 
        = 
        
          H 
          
            0 
           
         
        ∗ 
         
        
          
            ∗ 
            
              α 
              ∈ 
              A. 
              , 
              
                d 
                
                  α 
                 
               
              ∈ 
              
                R. 
                
                  α 
                 
               
             
           
         
        ( 
        H 
        ∩ 
        ( 
        
          d 
          
            α 
           
         
        
          G 
          
            α 
           
         
        
          d 
          
            α 
           
          
            - 
            1 
           
         
        ) 
        ) 
       
     
    {\ displaystyle H = H_ {0} * \, {\ underset {\ alpha \ in A, d _ {\ alpha} \ in R _ {\ alpha}} {*}} (H \ cap (d _ {\ alpha} G_ {\ alpha} d _ {\ alpha} ^ {- 1}))} 
   
  .  
It is 
  
    
      
        
          H 
          
            0 
           
         
       
     
    {\ displaystyle H_ {0}} 
   
   a free group, 
  
    
      
        
          R. 
          
            α 
           
         
       
     
    {\ displaystyle R _ {\ alpha}} 
   
  for each a representative system of  the -  double subclasses  .
  
    
      
        α 
        ∈ 
        A. 
       
     
    {\ displaystyle \ alpha \ in A} 
   
 
  
    
      
        ( 
        H 
        , 
        
          G 
          
            α 
           
         
        ) 
       
     
    {\ displaystyle (H, G _ {\ alpha})} 
   
   
 
If the index is also used   , the free group has the rank 
  
    
      
        [ 
        G 
        : 
        H 
        ] 
        = 
        m 
        < 
        ∞ 
       
     
    {\ displaystyle [G: H] = m <\ infty} 
   
 
  
    
      
        
          H 
          
            0 
           
         
       
     
    {\ displaystyle H_ {0}} 
   
  
  
    
      
        
          r 
          G 
         
        ( 
        
          H 
          
            0 
           
         
        ) 
        = 
        
          ∑ 
          
            α 
            ∈ 
            A. 
           
         
        ( 
        m 
        - 
        
          | 
         
        
          R. 
          
            α 
           
         
        
          | 
         
        ) 
        + 
        1 
        - 
        m 
       
     
    {\ displaystyle \ mathrm {rg} (H_ {0}) = \ sum _ {\ alpha \ in A} (m- | R _ {\ alpha} |) + 1-m} 
   
  .  
Relation to the Nielsen-Schreier theorem  
Kurosch's subgroup theorem  is stronger than the Nielsen-Schreier theorem  . The latter results from the former through specialization , as will be briefly explained here to clarify the terms.
  
    
      
        
          G 
          
            α 
           
         
        ≅ 
        
          Z 
         
       
     
    {\ displaystyle G _ {\ alpha} \ cong \ mathbb {Z}} 
   
  
If for all , the free group is of rank . A subgroup has the specified structure. With is also and therefore every trivial  or likewise isomorphic to . Hence the free product of free groups and thus itself is free. So it is shown that every subgroup of a free group is free again, and that is the qualitative statement from the Nielsen-Schreier theorem.
  
    
      
        
          G 
          
            α 
           
         
        ≅ 
        
          Z 
         
       
     
    {\ displaystyle G _ {\ alpha} \ cong \ mathbb {Z}} 
   
 
  
    
      
        α 
        ∈ 
        A. 
       
     
    {\ displaystyle \ alpha \ in A} 
   
 
  
    
      
        G 
        = 
        
          
            ∗ 
            
              α 
              ∈ 
              A. 
             
           
         
        
          G 
          
            α 
           
         
       
     
    {\ displaystyle G = {\ underset {\ alpha \ in A} {*}} G _ {\ alpha}} 
   
 
  
    
      
        
          | 
         
        A. 
        
          | 
         
       
     
    {\ displaystyle | A |} 
   
 
  
    
      
        H 
       
     
    {\ displaystyle H} 
   
 
  
    
      
        
          G 
          
            α 
           
         
        ≅ 
        
          Z 
         
       
     
    {\ displaystyle G _ {\ alpha} \ cong \ mathbb {Z}} 
   
 
  
    
      
        
          d 
          
            α 
           
         
        
          G 
          
            α 
           
         
        
          d 
          
            α 
           
          
            - 
            1 
           
         
        ≅ 
        
          Z 
         
       
     
    {\ displaystyle d _ {\ alpha} G _ {\ alpha} d _ {\ alpha} ^ {- 1} \ cong \ mathbb {Z}} 
   
 
  
    
      
        H 
        ∩ 
        ( 
        
          d 
          
            α 
           
         
        
          G 
          
            α 
           
         
        
          d 
          
            α 
           
          
            - 
            1 
           
         
        ) 
       
     
    {\ displaystyle H \ cap (d _ {\ alpha} G _ {\ alpha} d _ {\ alpha} ^ {- 1})} 
   
   
  
    
      
        
          Z 
         
       
     
    {\ displaystyle \ mathbb {Z}} 
   
 
  
    
      
        H 
       
     
    {\ displaystyle H} 
   
  
For the quantitative statement of the Nielsen-Schreier theorem, we restrict ourselves to a finite index set . Let the infinite cyclic group be generated by. Since the index of in is finite, the minor classes cannot all be different. There must therefore be a with and therefore also a with There , is , so 
  
    
      
        A. 
       
     
    {\ displaystyle A} 
   
 
  
    
      
        
          G 
          
            α 
           
         
       
     
    {\ displaystyle G _ {\ alpha}} 
   
 
  
    
      
        
          G 
          
            α 
           
         
        ∈ 
        
          G 
          
            α 
           
         
       
     
    {\ displaystyle g _ {\ alpha} \ in G _ {\ alpha}} 
   
 
  
    
      
        H 
       
     
    {\ displaystyle H} 
   
 
  
    
      
        G 
       
     
    {\ displaystyle G} 
   
 
  
    
      
        H 
        
          d 
          
            α 
           
         
        
          G 
          
            α 
           
          
            r 
           
         
        , 
         
        r 
        > 
        0 
       
     
    {\ displaystyle Hd _ {\ alpha} g _ {\ alpha} ^ {r}, \, r> 0} 
   
 
  
    
      
        r 
        > 
        0 
       
     
    {\ displaystyle r> 0} 
   
 
  
    
      
        H 
        
          d 
          
            α 
           
         
        = 
        H 
        
          d 
          
            α 
           
         
        
          G 
          
            α 
           
          
            r 
           
         
       
     
    {\ displaystyle Hd _ {\ alpha} = Hd _ {\ alpha} g _ {\ alpha} ^ {r}} 
   
 
  
    
      
        H 
        ∈ 
        H 
       
     
    {\ displaystyle h \ in H} 
   
 
  
    
      
        H 
        
          d 
          
            α 
           
         
        = 
        
          d 
          
            α 
           
         
        
          G 
          
            α 
           
          
            r 
           
         
       
     
    {\ displaystyle hd _ {\ alpha} = d _ {\ alpha} g _ {\ alpha} ^ {r}} 
   
 
  
    
      
        r 
        > 
        0 
       
     
    {\ displaystyle r> 0} 
   
 
  
    
      
        H 
        ≠ 
        1 
       
     
    {\ displaystyle h \ not = 1} 
   
 
  
    
      
        1 
        ≠ 
        H 
        = 
        
          d 
          
            α 
           
         
        
          G 
          
            α 
           
          
            r 
           
         
        
          d 
          
            α 
           
          
            - 
            1 
           
         
        ∈ 
        H 
        ∩ 
        ( 
        
          d 
          
            α 
           
         
        
          G 
          
            α 
           
         
        
          d 
          
            α 
           
          
            - 
            1 
           
         
        ) 
       
     
    {\ displaystyle 1 \ not = h = d _ {\ alpha} g _ {\ alpha} ^ {r} d _ {\ alpha} ^ {- 1} \ in H \ cap (d _ {\ alpha} G _ {\ alpha} d_ {\ alpha} ^ {- 1})} 
   
  
So this subgroup is not trivial and therefore isomorphic to . So is
  
    
      
        
          Z 
         
       
     
    {\ displaystyle \ mathbb {Z}} 
   
 
  
    
      
        
          r 
          G 
         
        ( 
        H 
        ) 
        = 
        
          r 
          G 
         
        ( 
        
          H 
          
            0 
           
         
        ) 
        + 
        
          ∑ 
          
            α 
            ∈ 
            A. 
            , 
            
              d 
              
                α 
               
             
            ∈ 
            
              R. 
              
                α 
               
             
           
         
        
          
            
              
                
                  r 
                  G 
                 
                ( 
                H 
                ∩ 
                ( 
                
                  d 
                  
                    α 
                   
                 
                
                  G 
                  
                    α 
                   
                 
                
                  d 
                  
                    α 
                   
                  
                    - 
                    1 
                   
                 
                ) 
                ) 
               
              ⏟ 
             
           
          
            = 
            1 
           
         
       
     
    {\ displaystyle \ mathrm {rg} (H) = \ mathrm {rg} (H_ {0}) + \ sum _ {\ alpha \ in A, d _ {\ alpha} \ in R _ {\ alpha}} \ underbrace { \ mathrm {rg} (H \ cap (d _ {\ alpha} G _ {\ alpha} d _ {\ alpha} ^ {- 1}))} _ {= 1}} 
   
       (since the ranks of free groups add up for free products)
  
    
      
        = 
         
        
          ∑ 
          
            α 
            ∈ 
            A. 
           
         
        ( 
        m 
        - 
        
          | 
         
        
          R. 
          
            α 
           
         
        
          | 
         
        ) 
        + 
        1 
        - 
        m 
         
         
        + 
         
         
        
          ∑ 
          
            α 
            ∈ 
            A. 
           
         
        
          | 
         
        
          R. 
          
            α 
           
         
        
          | 
         
       
     
    {\ displaystyle = \ quad \ sum _ {\ alpha \ in A} (m- | R _ {\ alpha} |) + 1-m \, \, + \, \, \ sum _ {\ alpha \ in A} | R _ {\ alpha} |} 
   
       (according to the ranking formula from Kurosch's subgroup theorem) 
  
    
      
        = 
         
        
          | 
         
        A. 
        
          | 
         
        m 
        + 
        1 
        - 
        m 
       
     
    {\ displaystyle = \ quad | A | m + 1-m} 
   
  , 
  
  
and that is exactly the formula from Nielsen-Schreier's theorem. 
Individual evidence  
^    DJS Robinson  : A Course in the Theory of Groups  , Springer-Verlag 1996, ISBN 978-1-4612-6443-9  , sentence 6.3.1 .: The Kuroš Subgroup Theorem  
 
↑    Wilfried Imrich in Combinatorial Mathematics V  , Springer Verlag (1976), Lecture Notes in Mathematics 622, Subgroups and Graphs  , Chapter 9: The Kurosh Subgroup Theorem  
 
^    Wilhelm Specht  : Group theory.  Springer-Verlag (1956), chapter 2.2.2, sentence 8 
 
↑    DJS Robinson  : A Course in the Theory of Groups  , Springer-Verlag 1996, ISBN 978-1-4612-6443-9  , explanations for theorem 6.3.1. 
 
 
 
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">