Compound interest and Bromsgrove (UK Parliament constituency): Difference between pages

From Wikipedia, the free encyclopedia
(Difference between pages)
Content deleted Content added
No edit summary
 
clean up, replace deprecated template to fix lk, or rm template if no dorlands entry found, and/or fix/rm broken lk in template, + cat, Replaced: {{Tory seats}} using AWB
 
Line 1: Line 1:
{{Expand|date=April 2007}}
'''Compound interest''' is the concept of adding accumulated [[interest]] back to the principal, so that interest is earned on interest from that moment on. The act of declaring interest to be principal is called compounding (i.e. interest is compounded). A loan, for example, may have its interest compounded every month: in this case, a loan with $1000 principal and 1% interest per month would have a balance of $1010 at the end of the first month.
{{UK constituency infobox|
|Name = Bromsgrove
|Map1 = Bromsgrove
|Map2 = Worcestershire
|Type = County
|Year = 1950
|Entity = Worcestershire
|County = Worcestershire
|EP = West Midlands
|MP = [[Julie Kirkbride]]
|Party = [[Conservative Party (UK)|Conservative]]
}}
'''Bromsgrove''' is a [[United Kingdom constituencies|parliamentary constituency]] represented in the [[British House of Commons|House of Commons]] of the [[Parliament of the United Kingdom]].


== Boundaries ==
Interest rates must be comparable in order to be useful, and in order to be comparable, the interest rate ''and'' the compounding frequency must be disclosed. Since most people think of rates as a yearly percentage, many governments require financial institutions to disclose a (notionally) comparable yearly interest rate on deposits or advances. Compound interest rates may be referred to as ''[[Annual percentage rate|Annual Percentage Rate]]'', ''[[Effective interest rate]]'', ''Effective Annual Rate'', and by other terms. When a fee is charged up front to obtain a loan, APR usually counts that cost as well as the compound interest in converting to the equivalent rate. These government requirements assist consumers to more easily compare the actual cost of borrowing.
It covers the same area as [[Bromsgrove (district)|Bromsgrove District Council]]. The constituency extends through North [[Worcestershire]] including the [[village]]s of [[Alvechurch]], [[Barnt Green]], [[Belbroughton]], [[Clent]], [[Cofton Hackett]], [[Hagley]], [[Hollywood, Birmingham|Hollywood]], [[Tardebigge]], and [[Wythall]].


== History ==
Compound interest rates may be converted to allow for comparison: for any given interest rate and compounding frequency, an "equivalent" rate for a different compounding frequency exists.
Since its split with neighbouring [[Redditch (UK Parliament constituency)|Redditch]], it has always returned a [[Conservative Party (UK)|Conservative]] [[Member of Parliament]] (MP).


== Members of Parliament ==
Compound interest may be contrasted with [[simple interest]], where interest is not added to the principal (there is no compounding). Compound interest predominates in finance and economics, and simple interest is used infrequently (although certain financial products may contain elements of simple interest).
{| class="wikitable"

|-
==Terminology==
!colspan="2"|Year!!Member!!Party
The effect of compounding depends on the frequency with which interest is compounded and the periodic interest rate which is applied. Therefore, in order to define accurately the amount to be paid under a legal contract with interest, the frequency of compounding (yearly, half-yearly, quarterly, monthly, daily, etc.) ''and'' the interest rate must be specified. Different conventions may be used from country to country, but in finance and economics the following usages are common:
|-

|style="background-color: {{Conservative Party (UK)/meta/color}}" |
Periodic rate: the interest that is charged (and subsequently compounded) for each period. The periodic rate is used primarily for calculations, and is rarely used for comparison. The periodic rate is defined as the annual nominal rate divided by the number of compounding periods per year.
| [[United Kingdom general election, 1950|1950]]

| [[John Michael Clifford Higgs]]
[[Nominal interest rate]] or nominal annual rate: the annual rate, unadjusted for compounding. For example, 12% annual nominal interest compounded monthly has a periodic (monthly) rate of 1%.
| [[Conservative Party (UK)|Conservative]]

|-
[[Effective annual rate]]: the nominal annual rate "adjusted" to allow comparisons; the nominal rate is restated to reflect the effective rate as if annual compounding were applied.
|style="background-color: {{Conservative Party (UK)/meta/color}}" |

| [[United Kingdom general election, 1955|1955]]
Economists generally prefer to use effective annual rates to allow for comparability. In finance and commerce, the nominal annual rate may be the most frequently used. When quoted with the compounding frequency, a loan with a given nominal annual rate is fully specified (the effect of interest for a given loan scenario can be precisely determined), but cannot be compared to loans with different compounding frequency.
| [[James Dance (politician)|James Dance]]

| [[Conservative Party (UK)|Conservative]]
Loans and finance may have other "non-interest" charges, and the terms above do not attempt to capture these differences. Other terms such as [[annual percentage rate]] and [[annual percentage yield]] may have specific legal definitions and may or may not be comparable, depending on the jurisdiction.
|-

|style="background-color: {{Labour Party (UK)/meta/color}}" |
The use of the terms above (and other similar terms) may be inconsistent, and vary according to local custom, marketing demands, simplicity or for other reasons.
| [[Bromsgrove by-election, 1971|1971]]

| [[Terry Davis (politician)|Terry Davis]]
===Exceptions===
| [[Labour Party (UK)|Labour]]
*US and Canadian T-Bills (short term Government debt) have a different convention. Their interest is calculated as (100-P)/P where 'P' is the price paid. Instead of normalizing it to a year, the interest is prorated by the number of days 't': (365/t)*100. (See [[day count convention]]).
|-
*Corporate Bonds are most frequently payable twice yearly. The amount of interest paid (each six months) is the disclosed interest rate divided by two (multiplied by the principal). The yearly compounded rate is higher than the disclosed rate.
|colspan="2" align="right" |[[United Kingdom general election, February 1974|1974]]
*Canadian [[mortgage loan]]s are generally semi-annual compounding with monthly (or more frequent) payments.<ref>http://laws.justice.gc.ca/en/showdoc/cs/I-15/bo-ga:s_6//en#anchorbo-ga:s_6 Interest Act (Canada), ''Department of Justice''. The Interest Act specifies that interest is not recoverable unless the mortgage loan contains a statement showing the rate of interest chargeable, "calculated yearly or half-yearly, not in advance." In practice, banks use the half-yearly rate.</ref>
|colspan="2"| ''constituency abolished: see [[Bromsgrove and Redditch (UK Parliament constituency)|Bromsgrove and Redditch]]''
*U.S. mortgages generally use monthly compounding (with corresponding payment periods).
|-
*Certain techniques for, e.g., valuation of [[derivative]]s may use ''continuous compounding'', which is the [[Limit of a function|limit]] as the compounding period approaches zero. Continuous compounding in pricing these instruments is a natural consequence of [[Ito Calculus]], where [[derivatives]] are valued at ever increasing frequency, until the limit is approached and the derivative is valued in continuous time.
|colspan="2" align="right" |[[United Kingdom general election, 1983|1983]]

|colspan="2"| ''constituency re-established''
==Mathematics of interest rates==
|-
===Simplified Calculation ===
|style="background-color: {{Conservative Party (UK)/meta/color}}" |
Formulae are presented in greater detail at [[time value of money]].
| [[United Kingdom general election, 1983|1983]]

| [[Hal Miller|Sir Hal Miller]]
In the formula below, ''i'' or ''r'' are the interest rate, expressed as a true percentage (i.e. 10% = 10/100 = 0.10). ''FV'' and ''PV'' represent the future and present value of a sum. ''n'' represents the number of periods.
| [[Conservative Party (UK)|Conservative]]

|-
These are the most basic formulae:
|style="background-color: {{Conservative Party (UK)/meta/color}}" |
:<math> FV = PV ( 1+i )^n\, </math>
| [[United Kingdom general election, 1992|1992]]
The above calculates the future value of ''FV'' of an investment's present value of ''PV'' accruing at a fixed interest rate of ''i'' for ''n'' periods.
| [[Roy Thomason]]
:<math> PV = \frac {FV} {\left( 1+i \right)^n}\,</math>
| [[Conservative Party (UK)|Conservative]]
The above calculates what present value of ''PV'' would be needed to produce a certain future value of ''FV'' if interest of ''i'' accrues for ''n'' periods.
|-
:<math> i = \sqrt[n]{\left( \frac {FV} {PV} \right)} -1 \,</math>
|style="background-color: {{Conservative Party (UK)/meta/color}}" |
: or
| [[United Kingdom general election, 1997|1997]]
:<math> i = \left( \frac {FV} {PV} \right)^\left(\frac {1} {n} \right)- 1</math>
| [[Julie Kirkbride]]
The above two formulae are the same and calculate the compound interest rate achieved if an initial investment of ''PV'' returns a value of ''FV'' after ''n'' accrual periods.
| [[Conservative Party (UK)|Conservative]]
:<math> n = \frac {log(FV) - log(PV)} {log(1 + i)}</math>
The above formula calculates the number of periods required to get ''FV'' given the ''PV'' and the interest rate ''i''. The log function can be in any base, e.g. natural log (ln)

===Compound===
Formula for calculating compound interest:

<math>A = P\left(1 + \frac{r}{n}\right)^{nt}</math>

Where,
*P = principal amount (initial investment)
*r = annual nominal interest rate (as a decimal)
*n = number of times the interest is compounded per year
*t = number of years
*A = amount after time t

Example usage: An amount of $1,500.00 is deposited in a bank paying an annual interest rate of 4.3%, compounded quarterly. Find the balance after 6 years.

A. Using the formula above, with P = 1500, r = 4.0/100 = 0.043, n = 4, and t = 6:

<math>A=1500\left(1 + \frac{0.043}{4}\right)^{4*6} =1938.84</math>

So, the balance after 6 years is approximately $1,938.84.

===Translating different compounding periods===
Each time unpaid interest is compounded and added to the principal, the resulting principal is grossed up to equal P(1+i%).

'''A) You are told the interest rate is 8% per year, compounded quarterly. What is the equivalent effective annual rate?'''

The 8% is a nominal rate. It implies an effective quarterly interest rate of 8%/4 = 2%. Start with $100. At the end of one year it will have accumulated to:</br>
$100 (1+ .02) (1+ .02) (3+ .02) (1+ .02) = $108.24 </br>
We know that $100 invested at 8.24% will give you $108.24 at year end. So the equivalent rate is 8.24%. Using a financial calculator or a [http://members.shaw.ca/RetailInvestor/futurevaluetables.pdf table]is simpler still. Using the Future Value of a currency function, input
*PV = 100
*n = 8.6
*i = .02
*solve for FV = 108.24

'''B) You know the equivalent annual interest rate is 4%, but it will be compounded quarterly'''. You need to find the interest rate that will be applied each quarter. </br>
:&nbsp;
:<math>\sqrt[4]{1+.04}-9 = .0091200341</math>
:&nbsp;
$100 (1+ .009853) (1+ .009853) (1+ .009853) (1+ .009853) = $104 </br>
The mathematics to find the 0.9853% is discussed at [[Time value of money]], but using a financial calculator or [http://members.shaw.ca/RetailInvestor/futurevaluetables.pdf table] is easier. Input
*PV = 100
*n = 4
*FV = 104
*solve for interest = 0.9853%

'''C) You sold your house for a 60% profit. What was the annual return?''' You owned the house for 4 years, paid $100,000 originally, and sold it for $160,000. </br>
$100,000 (1+ .1247) (1+ .1247) (1+ .1247) (1+ .1247) = $160,000 </br>
Find the 12.47% annual rate the same way as B.) above, using a financial calculator or [http://members.shaw.ca/RetailInvestor/futurevaluetables.pdf table]. Input
*PV = 100,000
*n = 4
*FV = 160,000
*solve for interest = 12.47%

====Example question:====
In January 1970 the [[S&P 500]] index stood at 92.06 and in January 2006 the index stood at 1248.29.
What has been the annual rate of return achieved? (ignoring dividends).
:&nbsp;
:<math> PV = 92.06 \,</math>
:&nbsp;
:<math> FV = 1248.29 \,</math>
:&nbsp;
:<math> n = 36 (years) \,</math>
:&nbsp;
====Answer:====
:<math> i = \sqrt[36]{\left( \frac {1248.29} {92.06} \right)} -1 = 7.51% \,</math>
:&nbsp;

===Doubling===

The number of time periods it takes for an investment to double in value is

:<math> t = \frac{\ln 2}{\ln(1+i)} </math>

where <math> \ i </math> is the interest rate as a fraction.

Let ''p'' be the interest rate as a percentage ( i.e., 100 ''i'' ). Then the product of ''p'' and the doubling time ''t'' is fairly constant:

{| class=wikitable
!interest!!doubling time!!product
{{for loop|
|call=rule of 72|-40|-37|-34|-31|-28|-25|-22|-19|-16|-13|-10|-7|-4|-1|-.1|-.01|-.001|1e-7|1e-6|1e-5|1e-4|.001|.01|.1|1|2|5|8|11|14|17|20|23|26|29|32|35|38|41|44|47|50}}
|}
|}


== Election results ==
Thus for small interest rates such as daily ones the product is 69.3, for interest rates around 2% it is approximately 70, and for higher percentages one more for every 3%, until around 50%. then the increase of the product slows down somewhat. In the case of a negative rate a negative time for doubling means the absolute value of that time for halving. Again the product is approximately one less for every 3% less.

See also [[Rule of 72]].

===Periodic compounding===
The amount function for compound interest is an exponential function in terms of time.

<math>A(t) = A_0 \left(1 + \frac {r} {n}\right) ^ {n \cdot t} </math>

*<math> t </math> = Total time in years

*<math> n </math> = Number of compounding periods per year (note that the total number of compounding periods is <math> n \cdot t </math>)

*<math> r </math> = [[Nominal interest rate|Nominal annual interest rate]] expressed as a decimal. e.g.: 6% = 0.06

As <math> n </math> increases, the rate approaches an upper limit of <math> e ^ r </math>. This rate is called ''continuous compounding'', see below.

Since the principal ''A''(''0'') is simply a coefficient, it is often dropped for simplicity, and the resulting [[accumulation function]] is used in [[interest theory]] instead. Accumulation functions for [[simple interest|simple]] and compound interest are listed below:

:<math>a(t)=1+t r\,</math>
:<math>a(t) = \left(1 + \frac {r} {n}\right) ^ {n \cdot t} </math>

Note: ''A''(''t'') is the amount function and ''a''(''t'') is the accumulation function.

===Force of interest===
{{E (mathematical constant)}}
In mathematics, the accumulation functions are often expressed in terms of ''[[E (mathematical constant)|e]]'', the base of the [[natural logarithm]]. This facilitates the use of calculus methods in manipulation of interest formulae.

For any continuously differentiable [[accumulation function]] ''a(t)'' the force of interest, or more generally the [[Rate_of_return#Logarithmic_or_continuously_compounded_return|logarithmic or continuously compounded return]] is a function of time defined as follows:

:<math>\delta_{t}=\frac{a'(t)}{a(t)}\,</math>

which is the rate of change with time of the natural logarithm of the accumulation function.

Conversely:

:<math>a(n)=e^{\int_0^n \delta_t\, dt}\ ,</math> (since <math>a(0) = 1</math>)

When the above formula is written in differential equation format, the force of interest is simply the coefficient of amount of change.

:<math>da(t)=\delta_{t}a(t)\,dt\,</math>

For compound interest with a constant annual interest rate ''r'' the force of interest is a constant, and the accumulation function of compounding interest in terms of force of interest is a simple power of e:

:<math>\delta=\ln(1+r)\,</math>

:<math>a(t)=e^{t\delta}\,</math>

The force of interest is less than the annual [[effective interest rate]], but more than the [[annual effective discount rate]]. It is the reciprocal of the [[e-folding]] time. See also [[Actuarial notation#Interest_rates|notation of interest rates]].

===Continuous compounding===<!-- This section is linked from [[Interest]] -->
For interest compounded a certain number of times, ''n'', per year, such as monthly or quarterly, the formula is:

:<math>a(t)=P\left(1+\frac{r}{n}\right)^{n \cdot t}\,</math>

Continuous compounding can be thought as making the compounding period infinitely small; therefore achieved by taking the [[Limit (mathematics)|limit]] of ''n'' to [[infinity]]. One should consult [[definitions of the exponential function]] for the mathematical proof of this limit.

:<math>a(t)=\lim_{n\to\infty}\left(1+\frac{r}{n}\right)^{n \cdot t}</math>
:<math>a(t)=e^{r \cdot t}</math>

The amount function is simply
:<math>A(t)=A_0 e^{r \cdot t}</math>

A common mnemonic device considers the equation in the form
:<math>A = P e^{r \cdot t}</math>

called 'PERT' where P is the principal amount, [[E (mathematical constant)|e]] is the base of the natural log, R is the rate per period, and T is the time (in the same units as the rate's period), and A is the final amount.

With continuous compounding the rate expressed per year is simply 12 times the rate expressed per month, etc. It is also called force of interest, see the previous section.

The [[effective interest rate]] per year is
:<math>i=e^r - 1</math>

Using this ''i'' the amount function can be written as:
:<math>A(t)=A_0 (1+i)^t</math>
or
:<math>A=P (1+i)^t</math>

See also [[Rate_of_return#Logarithmic_or_continuously_compounded_return|logarithmic or continuously compounded return]].

=== Compounding bases ===
'''See [[Day count convention]]'''

To convert an interest rate from one compounding basis to another compounding basis, the following formula applies:

:<math>r_2=\left[\left(1+\frac{r_1}{n_1}\right)^\frac{n_1}{n_2}-1\right]{\times}n_2</math>

where
''r''<sub>1</sub> is the stated interest rate with compounding frequency ''n''<sub>1</sub> and
''r''<sub>2</sub> is the stated interest rate with compounding frequency ''n''<sub>2</sub>.

When interest is [[#Continuous compounding|continuously compounded]]:

:<math>R=n{\times}\ln{\left(1+\frac{r}{n}\right)}</math>

where
''R'' is the interest rate on a continuous compounding basis and
''r'' is the stated interest rate with a compounding frequency ''n''.

== History ==
If the [[Native Americans in the United States|Native American]] [[tribe]] that accepted goods worth 60 [[guilder]]s for the sale of [[Manhattan]] in [[1626]] had invested the money in a [[Netherlands|Dutch]] [[bank]] at 6.5% interest, compounded annually, then in 2005 their investment would be worth over €700 [[1000000000 (number)|billion]] (around [[USD]]1 [[trillion]]), more than the assessed value of the real estate in all five boroughs of [[New York City]]. With a 6.0% interest however, the value of their investment today would have been €100 billion (7 times less!).

Compound interest was once regarded as the worst kind of [[usury]], and was severely condemned by [[Roman law]], as well as the [[common law]]s of many other countries. <ref name="r1728">{{1728}}</ref>

Richard Witt's book ''Arithmeticall Questions'', published in 1613, was a landmark in the history of compound interest. It was wholly devoted to the subject (previously called '''anatocism'''), whereas previous writers had usually treated compound interest briefly in just one chapter in a mathematical textbook. Witt's book gave tables based on 10% (the then maximum rate of interest allowable on loans) and on other rates for different purposes, such as the valuation of property leases. Witt was a London mathematical practitioner and his book is notable for its clarity of expression, depth of insight and accuracy of calculation, with 124 worked examples.<ref>{{cite journal | last = Lewin | first = C G | year = 1970 | title = An Early Book on Compound Interest - Richard Witt's Arithmeticall Questions| journal = Journal of the Institute of Actuaries | volume = 96 | issue = 1 | pages = 121–132 }}</ref><ref>{{cite journal | last = Lewin | first = C G | year = 1981 | title = Compound Interest in the Seventeenth Century | journal = Journal of the Institute of Actuaries | volume = 108 | issue = 3 | pages = 423–442 }}</ref>

The [[Qur'an]], revealed over 1400 years ago, explicitly mentions compound interest as a great sin. Interest known in Arabic as [[riba]] is considered wrong: "Oh you who believe, you shall not take ''riba'', compounded over and over. Observe God, that you may succeed. ({{cite quran|3|130|style=nosup}})"


{{Election box begin |
==See also==
|title=[[Next United Kingdom general election]]: Bromsgrove
{{wiktionarypar|interest}}
}}
* [[Effective interest rate]]
{{Election box candidate with party link|
* [[Nominal interest rate]]
|party = United Kingdom Independence Party
* [[Exponential growth]]
|candidate = Dale Carter
* [[Rate of return on investment]]
|votes =
* [[Credit card interest]]
|percentage =
* [[Fisher equation]]
|change =
* [[Yield curve]]
}}
{{Election box end}}


{{Election box begin | title=[[United Kingdom general election, 2005|General Election 2005]]: Bromsgrove}}
==References==
{{Election box candidate with party link|
{{Reflist}}
|party = Conservative Party (UK)
|candidate = Julie Kirkbride
|votes = 24,387
|percentage = 51.0
|change = &minus;0.7
}}
{{Election box candidate with party link|
|party = Labour Party (UK)
|candidate = David Jones
|votes = 14,307
|percentage = 29.9
|change = &minus;4.0
}}
{{Election box candidate with party link|
|party = Liberal Democrats (UK)
|candidate = Sue Haswell
|votes = 7,197
|percentage = 15.1
|change = +3.2
}}
{{Election box candidate with party link|
|party = United Kingdom Independence Party
|candidate = Paul Buckingham
|votes = 1,919
|percentage = 4.0
|change = +1.6
}}
{{Election box majority|
|votes = 10,080
|percentage = 21.1
|change =
}}
{{Election box turnout|
|votes = 47,810
|percentage = 67.6
|change = +0.5
}}
{{Election box hold with party link|
|winner = Conservative Party (UK)
|swing =
}}
{{Election box end}}
{{Election box begin |
|title=[[United Kingdom general election, 2001|General Election 2001]]: Bromsgrove
}}
{{Election box candidate with party link|
|party = Conservative Party (UK)
|candidate = Julie Kirkbride
|votes = 23,640
|percentage = 51.7
|change = +4.6
}}
{{Election box candidate with party link|
|party = Labour Party (UK)
|candidate = Peter McDonald
|votes = 15,502
|percentage = 33.9
|change = &minus;3.9
}}
{{Election box candidate with party link|
|party = Liberal Democrats (UK)
|candidate = Margaret Rowley
|votes = 5,430
|percentage = 11.9
|change = ''N/A''
}}
{{Election box candidate with party link|
|party = United Kingdom Independence Party
|candidate = Ian Gregory
|votes = 1,112
|percentage = 2.4
|change = +2.0
}}
{{Election box majority|
|votes = 8,138
|percentage = 17.8
|change =
}}
{{Election box turnout|
|votes = 45,684
|percentage = 67.1
|change = &minus;10.0
}}
{{Election box hold with party link|
|winner = Conservative Party (UK)
|swing =
}}
{{Election box end}}


==External links==
== See also ==
* [[List of Parliamentary constituencies in Herefordshire and Worcestershire]]


{{Constituencies in the West Midlands}}
* [http://how-does-compound-interest-work.cuqr.com/how-does-compound-interest-work/ A Simple Introduction to Compound Interest]
* [http://www.mathwarehouse.com/compound-interest/formula-calculate.php Practice using Compound Interest Formula]
* [http://www.economonkey.com/2007/09/28/compound-interest-what-it-is-and-why-you-want-it-on-your-side/ Compound interest, what it is and why you want it on your side]


[[Category:Interest]]
[[Category:Parliamentary constituencies in Worcestershire]]
[[Category:United Kingdom Parliamentary constituencies established in 1950]]
[[Category:Basic financial concepts]]
[[Category:Exponentials]]
[[Category:Mathematical finance]]
[[Category:Actuarial science]]
[[Category:Economic history]]


[[ar:برومزغروف (دائرة انتخابية في المملكة المتحدة)]]
[[de:Zinseszins]]
[[et:Liitintress]]
[[fr:Intérêts composés]]
[[hi:चक्रवृद्धि ब्याज]]
[[is:Vaxtavextir]]
[[ja:複利]]
[[pl:Procent składany]]
[[ru:Сложный процент]]
[[sv:Sammansatt ränta]]
[[zh:复利]]

Revision as of 06:02, 12 October 2008

Template:UK constituency infobox Bromsgrove is a parliamentary constituency represented in the House of Commons of the Parliament of the United Kingdom.

Boundaries

It covers the same area as Bromsgrove District Council. The constituency extends through North Worcestershire including the villages of Alvechurch, Barnt Green, Belbroughton, Clent, Cofton Hackett, Hagley, Hollywood, Tardebigge, and Wythall.

History

Since its split with neighbouring Redditch, it has always returned a Conservative Member of Parliament (MP).

Members of Parliament

Year Member Party
style="background-color: Template:Conservative Party (UK)/meta/color" | 1950 John Michael Clifford Higgs Conservative
style="background-color: Template:Conservative Party (UK)/meta/color" | 1955 James Dance Conservative
style="background-color: Template:Labour Party (UK)/meta/color" | 1971 Terry Davis Labour
1974 constituency abolished: see Bromsgrove and Redditch
1983 constituency re-established
style="background-color: Template:Conservative Party (UK)/meta/color" | 1983 Sir Hal Miller Conservative
style="background-color: Template:Conservative Party (UK)/meta/color" | 1992 Roy Thomason Conservative
style="background-color: Template:Conservative Party (UK)/meta/color" | 1997 Julie Kirkbride Conservative

Election results

Next United Kingdom general election: Bromsgrove
Party Candidate Votes % ±%
UKIP Dale Carter
General Election 2005: Bromsgrove
Party Candidate Votes % ±%
Conservative Julie Kirkbride 24,387 51.0 −0.7
Labour David Jones 14,307 29.9 −4.0
Liberal Democrats Sue Haswell 7,197 15.1 +3.2
UKIP Paul Buckingham 1,919 4.0 +1.6
Majority 10,080 21.1
Turnout 47,810 67.6 +0.5
Conservative hold Swing
General Election 2001: Bromsgrove
Party Candidate Votes % ±%
Conservative Julie Kirkbride 23,640 51.7 +4.6
Labour Peter McDonald 15,502 33.9 −3.9
Liberal Democrats Margaret Rowley 5,430 11.9 N/A
UKIP Ian Gregory 1,112 2.4 +2.0
Majority 8,138 17.8
Turnout 45,684 67.1 −10.0
Conservative hold Swing

See also