Infinite descending chain

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by BigDwiki (talk | contribs) at 01:47, 16 August 2019 (clean up). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Given a set S with a partial order ≤, an infinite descending chain is an infinite, strictly decreasing sequence of elements x1 > x2 > ... > xn > ...

As an example, in the set of integers, the chain −1, −2, −3, ... is an infinite descending chain, but there exists no infinite descending chain on the natural numbers, as every chain of natural numbers has a minimal element.

If a partially ordered set does not possess any infinite descending chains, it is said then, that it satisfies the descending chain condition. Assuming the axiom of choice, the descending chain condition on a partially ordered set is equivalent to requiring that the corresponding strict order is well-founded. A stronger condition, that there be no infinite descending chains and no infinite antichains, defines the well-quasi-orderings. A totally ordered set without infinite descending chains is called well-ordered.

See also

References

  • Yiannis N. Moschovakis (2006) Notes on set theory, Undergraduate Texts in Mathematics (Birkhäuser) ISBN 0-387-28723-X, p. 116