High voltage and Wikipedia:Articles for deletion/Leesville Road High School: Difference between pages

From Wikipedia, the free encyclopedia
(Difference between pages)
Content deleted Content added
copyedit and reference
 
Just Chilling (talk | contribs)
 
Line 1: Line 1:
===[[Leesville Road High School]]===
{{otheruses}}
{{REMOVE THIS TEMPLATE WHEN CLOSING THIS AfD|O}}


:{{la|Leesville Road High School}} (<span class="plainlinks">[{{fullurl:Leesville Road High School|wpReason={{urlencode: [[Wikipedia:Articles for deletion/Leesville Road High School]]}}&action=delete}} delete]</span>) – <includeonly>([[Wikipedia:Articles for deletion/Leesville Road High School|View AfD]])</includeonly><noinclude>([[Wikipedia:Articles for deletion/Log/2008 October 10#{{anchorencode:Leesville Road High School}}|View log]])</noinclude>
[[Image:High voltage warning.svg|thumb|International [[safety symbol]] "Caution, risk of electric shock" ([[International Organization for Standardization|ISO]] 3864), colloquially known as ''high voltage symbol''.]]
unreferenced article fails to establish why this high school is notable. [[User:Rtphokie|Rtphokie]] ([[User talk:Rtphokie|talk]]) 19:06, 10 October 2008 (UTC)

*'''Keep''' - high school for which sources are available to meet [[WP:N]]. [[User:TerriersFan|TerriersFan]] ([[User talk:TerriersFan|talk]]) 19:20, 10 October 2008 (UTC)
[[Image:plasma-filaments.jpg|thumb|right|300px|[[High voltage]]s may lead to [[electrical breakdown]] resulting in an [[electrical discharge]] as illustrated by the [[Plasma (physics)|plasma]] filaments streaming from a [[Tesla coil]]. ]]
*'''Keep''' [http://news.google.com/archivesearch?q=%22Leesville+Road+High+School%22&btnG=Search&hl=en&um=1&ie=UTF-8 Plenty of sources] to establish [[Wikipedia:Notability|notability]]. [[User:Cunard|Cunard]] ([[User talk:Cunard|talk]]) 19:55, 10 October 2008 (UTC)

*'''Keep''' Per above and searches on other schools in this AFD batch.--[[User:Cube lurker|Cube lurker]] ([[User talk:Cube lurker|talk]]) 20:03, 10 October 2008 (UTC)
The term '''high voltage''' characterizes electrical circuits, in which the voltage used is the cause of particular safety concerns and insulation requirements. High voltage is used in [[electrical power distribution]], in [[cathode ray tube]]s, to generate [[X-rays]] and [[particle beam]]s, to demonstrate [[arcing]], for ignition, in [[photomultiplier| photomultiplier tubes]], and high power [[amplifier]] [[vacuum tube]]s and other industrial and scientific applications.
*<small>'''Note''': This debate has been included in the [[Wikipedia:WikiProject Deletion sorting/Schools|list of Schools-related deletion discussions]]. </small><small>—[[User:TerriersFan|TerriersFan]] ([[User talk:TerriersFan|talk]]) 20:04, 10 October 2008 (UTC)</small>

== Definition ==
The numerical definition of ''high voltage'' depends on the context of the discussion. Two factors considered in the classification of a "high voltage" are the possibility of causing a spark in air, and the danger of electric shock by contact or proximity. The definitions may refer either to the voltage between two conductors of a system, or between any conductor and [[Ground (electricity)|ground]].

In [[electric power transmission]] engineering, high voltage is usually considered any voltage over approximately 35,000 volts. This is a classification based on the design of apparatus and insulation.

The [[International Electrotechnical Commission]] and its national counterparts ([[Institution of Engineering and Technology|IET]], [[IEEE]], [[VDE]], etc.) define ''high voltage'' circuits as those with more than 1000 [[volt|V]] for [[alternating current]] and at least 1500 V for [[direct current]], and distinguish it from [[low voltage]] (50–1000 V AC or 120–1500 V DC) and [[extra low voltage]] (&lt;50 V AC or &lt;120 V DC) circuits. This is in the context of building wiring and the safety of electrical apparatus.

In the [[United States]] 2005 [[National Electrical Code]] (NEC), ''high voltage'' is any voltage over 600 V (article 490.2). British Standard [[BS 7671]]:2008 defines ''high voltage'' as any voltage difference between conductors that is higher than 1000 V AC or 1500 V ripple-free DC, or any voltage difference between a conductor and Earth that is higher than 600 V AC or 900 V ripple-free DC. [[Electrician]]s may only be licensed for particular voltage classes, in some jurisdictions.<ref> One such jurisdiction is [[Manitoba]], where the ''Electrician's Licence Act, CCSM E50, establishes classes of electrician's licences by voltage. </ref> For example an electrical license for a specialized sub-trade such as installation of [[HVAC]] systems, [[fire alarm]] systems, [[closed circuit television]] systems may only be authorized to install systems energized up to 30 volts between conductors, and may not be permitted to work on mains-voltage circuits.

The general public may consider household [[mains electricity|mains]] circuits (100–250 V AC), which carry the highest voltages they normally encounter, to be ''high voltage''.

Voltages over approximately 50 volts can usually cause dangerous amounts of current to flow through a human being touching two points of a circuit, so safety standards generally are more restrictive where the chance of contact with such high voltage circuits exists.

In [[digital electronics]], a ''high'' voltage is the one that represents a logic 1; this may be only several hundred millivolts for some [[logic family|logic families]].

The definition of ''extra high voltage'' (EHV) depends on the context of the discussion. In electric power transmission engineering this refers to equipment designed for more than 235,000 volts between conductors. In electronics systems, a power supply that provides greater than 275,000 volts is known as an "EHV Power Supply". It is often used in experiments in physics.

The accelerating voltage for a television cathode ray tube may be described as "extra high voltage" or "extra-high tension" (EHT), as compared to other voltage supplies within the equipment. This type of supply ranges from >5 kV to about 50 kV.

==Safety==

Voltages of greater than 50 V applied across dry unbroken human skin are capable of producing heart [[fibrillation]] if they produce [[electric current]]s in body tissues which happen to pass through the [[chest]] area. The [[electric shock|electrocution]] danger is mostly determined by the low [[conductivity]] of dry human skin. If skin is wet, or if there are wounds, or if the voltage is applied to [[electrode]]s which penetrate the skin, then even voltage sources below 40 V can be lethal if contacted.

Accidental contact with high voltage supplying sufficent energy will usually result in severe injury or death. This can occur as a person's body provides a path for current flow causing tissue damage and heart failure. Other injuries can include burns from the arc generated by the accidental contact. These can be especially dangerous if the victim's airways are affected. Injuries may also be suffered as a result of the physical forces exerted as people may fall from height or be thrown a considerable distance.

Low-energy exposure to high voltage may be harmless, such as the spark produced in a dry climate when touching a doorknob after walking across a carpeted floor.

==Sparks in air==
[[Image:electrostatic-discharge.jpg|thumb|right|200px|Long exposure photograph of a [[Tesla coil]] showing the repeated [[electric discharge]]s.]]

The [[dielectric breakdown]] strength of dry air, at [[Standard Temperature and Pressure]] (STP), between spherical electrodes is approximately 33 kV/cm.<ref>A. H. Howatson, "An Introduction to Gas Discharges", Pergamom Press, Oxford, 1965, no ISBN - page 67</ref> This is only as a rough guide since the actual breakdown voltage is highly dependent upon the electrode shape and size. Strong [[electric field]]s (from high voltages applied to small or pointed conductors), often produce violet-colored [[corona discharge]]s in air, as well as visible sparks. Voltages below about 500-700 volts cannot produce easily visible [[spark]]s or glows in air at atmospheric pressure, so by this rule these voltages are 'low'. However, under conditions of low atmospheric pressure (such as in high-altitude [[aircraft]]), or in an environment of [[noble gas]] such as [[argon]], [[neon]], etc., sparks will appear at much lower voltages. 500 to 700 volts is not a fixed minimum for producing spark breakdown, but it is a rule of thumb. For air at STP, the minimum sparkover voltage is around 380 volts. <!-- a reference would be great-->

While lower voltages will not generally jump a gap that is present before the voltage is applied, interrupting an existing current flow often produces a low voltage [[spark]] or [[electric arc|arc]]. As the contacts are separated, a few small points of contact become the last to separate. The current becomes constricted to these small ''hot spots'', causing them to become incandescent, so that they emit electrons (through [[thermionic emission]]). Even a small [[9 V battery]] can spark noticeably by this mechanism in a darkened room. The ionized air and metal vapour (from the contacts) form plasma, which temporarily bridges the widening gap. If the power supply and load allow sufficient current to flow, a self-sustaining [[electric arc|arc]] may form. Once formed, an arc may be extended to a significant length before breaking the circuit. Attempting to open an inductive circuit often forms an arc since the [[inductance]] provides a high voltage pulse whenever the current is interrupted. [[Alternating Current|AC]] systems make sustained arcing somewhat less likely since the current returns to zero twice per cycle. The arc is extinguished every time the current goes through a [[zero crossing]], and must reignite during the next half cycle in order to maintain the arc.

Unlike an ohmic conductor, the voltage at the ends of an arc decreases as the current increases. This makes unintentional arcs in electrical apparatus dangerous since once even a small arc is initiated, if sufficient current is available, the arc will grow. Such arcs can cause great damage to equipment and present a severe fire hazard. Intentionally produced arcs, such as used in lighting or [[welding]], require some element in the circuit to stabilize the arc's current/voltage characteristics.

==Electrostatic devices and phenomena==
A high voltage is not necessarily dangerous if it cannot deliver substantial [[electrical current|current]]. The common [[electrostatics|static electric sparks]] seen under low-humidity conditions always involve voltage buildups well above 700 V. For example, sparks to car doors in winter can involve voltages as high as 20,000 V<ref>[http://www.jci.co.uk/Carseats2.html John Chubb, "Control of body voltage getting out of a car," IOP Annual Congress, Brighton, 1998 ]</ref>. Also, physics demonstration devices such as [[Van de Graaff generator]]s and [[Wimshurst machine]]s can produce voltages approaching one million volts, yet at worst they deliver a brief sting. These devices have a limited amount of stored energy, so the current produced is low and usually for a short time.<ref>[http://www.amasci.com/emotor/vdgdesc.html Van de Graaff Generators Frequently Asked Questions - 1998 William J. Beaty]</ref> During the discharge, these machines apply high voltage to the body for only a millionth of a second or less. The discharge may involve extremely high power over very short periods, but in order to produce heart fibrillation, an electric [[power supply]] must produce a significant current in the heart muscle continuing for many [[millisecond]]s, and must deposit a total energy in the range of at least millijoules or higher. Alternatively, it must deliver enough energy to damage tissue through heating. Since the duration of the discharge is brief, it generates far less heat (spread over time) than a mobile phone.<!-- This needs to be organized better to state that energy, not just voltage, is the hazard -->

Note that [[Tesla coil]]s are a special case, and touching them is not recommended. Among other issues, they have a tendency to arc to their own bottom-end circuitry, which can introduce powerline frequency (50 Hz or 60 Hz, and capable in any case of depolarizing cells and stopping the heart) currents at lethally high voltages to the body.

==Power lines==
[[Image:Ligne haute-tension.jpg|right|thumb|High tension power lines.]]
Electrical transmission and distribution lines for [[electric power]] always use voltages significantly higher than 50 volts, so contact with or close approach to the line conductors presents a danger of [[electric shock|electrocution]]. Contact with [[overhead wires]] is a frequent cause of injury or death. Metal ladders, farm equipment, boat masts, construction machinery, aerial [[antennas]], and similar objects are frequently involved in fatal contact with overhead wires. Digging into a buried cable can also be dangerous to workers at an excavation site. Digging equipment (either hand tools or machine driven) that contacts a buried cable may energize piping or the ground in the area, resulting in electrocution of nearby workers. Unauthorized persons climbing on power pylons or electrical apparatus are also frequently the victims of electrocution.<ref name="NIOSH">National Institute for Occupational Safety and Health FACE - Fatality Assessment and Control Evaluation [http://www.cdc.gov/niosh/injury/traumaelface.html] cases of high voltage related casualties.</ref> At very high transmission voltages even a close approach can be hazardous since the high voltage may spark across a significant air gap.

For high voltage and extra-high voltage transmission lines, specially trained personnel use so-called "live line" techniques to allow hands-on contact with energized equipment. In this case the worker is electrically connected to the [[high voltage line]] but thoroughly insulated from the earth so that he is at the same electrical potential as the line. Since training for such operations is lengthy, and still presents a danger to personnel, only very important transmission lines are subject to maintenance while live. Outside these properly engineered situations, it should not be assumed that being insulated from earth guarantees that no current will flow to earth as grounding, or arcing to ground, can occur in unexpected ways, and high-frequency currents can cause burns even to an ungrounded person (touching a transmitting [[Antenna (radio)|antenna]] is dangerous for this reason, and a high-frequency [[Tesla Coil]] can sustain a spark with only one endpoint).

Protective equipment on high-voltage transmission lines normally prevents formation of an unwanted arc, or ensures that it is quenched within tens of milliseconds. Electrical apparatus which interrupts high-voltage circuits is designed to safely direct the resulting arc so that it dissipates without damage. High voltage [[circuit breakers]] often use a blast of high pressure air, a special [[dielectric]] gas (such as [[SF6|SF<sub>6</sub>]] under pressure), or immersion in [[mineral oil]] to quench the arc when the high voltage circuit is broken.

==Arc flash hazard==
Depending on the [[Maximum prospective short circuit current|short circuit current]] available at a [[switchgear]] line-up, a hazard is presented to maintenance and operating personnel due to the possibility of a high-intensity [[electric arc]]. Maximum temperature of an arc can exceed 10,000 [[kelvin]], and the radiant heat, expanding hot air, and explosive vaporization of metal and insulation material can cause severe injury to unprotected workers. Such switchgear line-ups and high-energy arc sources are commonly present in electric power utility substations and generating stations, industrial plants and large commercial buildings. In the [[United States]] the [[National Fire Protection Association]], has published a guideline standard [[NFPA 70E]] for evaluating and calculating ''arc flash hazard'', and provides standards for the protective clothing required for electrical workers exposed to such hazards in the workplace.

==Explosion hazard==
Even voltages insufficient to break down air can be associated with enough energy to ignite atmospheres containing flammable gases or vapours, or suspended dust. For example [[hydrogen]] gas, [[natural gas]], or [[gasoline]] vapor mixed with air can be ignited by sparks produced by electrical apparatus. Examples of industrial facilities with hazardous areas are petrochemical refineries, chemical plants, grain elevators, and some kinds of coal mines.

Measures taken to prevent such explosions include:
*[[Intrinsic safety]] by the use of apparatus designed not to accumulate enough stored electrical energy to trigger an explosion
*Increased safety, which applies to devices using measures such as oil-filled enclosures to prevent sparks
*Explosion-proof enclosures, which are designed so that an explosion within the enclosure cannot escape and ignite a surrounding explosive atmosphere (this designation does not imply that the apparatus will survive an internal or external explosion).

In recent years standards for explosion hazard protection have become more uniform between European and North American practice. The "zone" system of classification is now used in modified form in [[United States|U.S.]] [[National Electrical Code (US)|National Electrical Code]] and in the Canadian electrical code. Intrinsic safety apparatus is now approved for use in North American applications, though the explosion-proof enclosures used in North America are still uncommon in Europe.

== Toxic gases ==
Electrical discharges, including partial discharge and [[Corona discharge|corona]], can produce small quantities of toxic gases, which in a confined space can be a serious health hazard. These gases include [[ozone]] and various [[Nitrogen oxide|oxides of nitrogen]].

==Lightning ==
The largest-scale sparks are those produced naturally by [[lightning]]. An average bolt of negative lightning carries a current of 30-to-50 kiloamperes, transfers a charge of 5 [[coulomb]]s, and dissipates 500 [[megajoule]]s of energy (enough to light a 100 watt light bulb for 2 months). However, an average bolt of positive lightning (from the top of a thunderstorm) may carry a current of 300-to-500 kiloamperes, transfer a charge of up to 300 coulombs, have a potential difference up to 1 gigavolt (a billion volts), and may dissipate enough energy to light a 100 watt lightbulb for up to 95 years. A negative lightning stroke typically lasts for only tens of microseconds, but multiple strikes are common. A positive lightning stroke is typically a single event. However, the larger peak current may flow for hundreds of milliseconds, making it considerably hotter and more dangerous than negative lightning.

Hazards due to lightning obviously include a direct strike on persons or property. However, lightning can also create dangerous voltage gradients in the earth and can charge extended metal objects such as [[telephone]] cables, fences, and pipelines to dangerous voltages that can be carried many miles from the site of the strike. Although many of these objects are not normally conductive, very high voltage can cause the electrical breakdown of such insulators, causing them to act as conductors. These transferred potentials are dangerous to people, livestock, and electronic apparatus. Lightning strikes also start fires and explosions, which result in fatalities, injuries, and property damage. For example, each year in North America, thousands of [[forest fire]]s are started by lightning strikes.

Measures to control lightning can mitigate the hazard; these include [[lightning rod]]s, shielding wires, and bonding of electrical and structural parts of buildings to form a continuous enclosure.

Lightning discharges in the atmosphere of [[Jupiter (planet)|Jupiter]] are thought to be the source of the planet's powerful [[radio]] frequency emissions.

==See also==
{{Portal|Energy}}
* [[Electrical engineering]]
* [[Electric power transmission]] (includes a 'Health concerns' section)
* '''[[Lock and tag]]''' ''Safety Procedures'' (''As required by [[OSHA]] and [[NFPA 70E]] in the USA'')
* '''People''' : [[Nikola Tesla]], [[Robert J. Van de Graaff]], [[Thomas Burton Kinraide]]
* '''Devices''' : [[Tesla coil]], [[spark gap]]
* '''Other''': [[voltage]], [[25 kV AC]]

==References==
{{reflist}}
* High Voltage Engineering - Dr M S Naidu & Dr V Kamaraju, Publisher: McGraw-Hill
*[http://www.crcpress.com/shopping_cart/products/product_detail.asp?sku=DK2791&isbn=9780824740566&parent_id=&pc=]Vladimir Gurevich "Protection Devices and Systems for High-Voltage Applications", CRC Press, London - New York, 2003, 292 p.

==External links==
* [http://www.transportsupport.co.uk/main/products_overhead_cable_detectors.html Prevention of High Voltage Accidents]
* [http://www.nfpa.org/catalog/ ''NFPA 70E'': Electrical Safety in the Workplace, USA]
* [http://www.mikeholt.com/technical.php?id=nec/technicalnecfreestuff Mike Holt NEC in the USA]
* [http://www.eh.doe.gov/techstds/standard/hdbk1092/hdbk1092.pdf USA Department of Energy ''electrical safety handbook'']
* [http://www.highvoltageinfo.com/glossary.php High voltage glossary]
*[http://www.crcpress.com/shopping_cart/products/product_detail.asp?sku=DK2791&isbn=9780824740566&parent_id=&pc=] Vladimir Gurevich "Protection Devices and Systems for High Voltage Applications", CRC Press, London - New York, 2003, 292 p.

[[Category:Electricity]]
[[Category:Electrical engineering]]
[[Category:Electrical safety]]
[[Category:Hazards]]

[[ca:Alta tensió]]
[[de:Hochspannung]]
[[et:Kõrgepinge]]
[[es:Alta tensión eléctrica]]
[[fa:ولتاژ بالا]]
[[fr:Haute tension A]]
[[hu:High Voltage]]
[[nl:Hoogspanning (elektriciteit)]]
[[no:Høyspenning]]
[[pl:Wysokie napięcie]]
[[sv:Högspänning]]
[[zh:高压电]]

Revision as of 20:04, 10 October 2008

Leesville Road High School

Leesville Road High School (edit | talk | history | protect | delete | links | watch | logs | views) (delete) – (View log)

unreferenced article fails to establish why this high school is notable. Rtphokie (talk) 19:06, 10 October 2008 (UTC)