Cluain Tarbh and Chemical kinetics: Difference between pages

From Wikipedia, the free encyclopedia
(Difference between pages)
Content deleted Content added
spell
 
 
Line 1: Line 1:
[[Image:Molecular-collisions.jpg|thumb|right|400px|[[Reaction rate]] tends to increase with [[concentration]] - a phenomenon explained by [[collision theory]].]]
:''Cluain Tarbh is also the name of an [[Clontarf, Dublin|Irish town]] from which the album takes its name.''
'''Chemical kinetics''', also known as reaction kinetics, is the study of [[reaction rate|rates]] of chemical processes. Chemical kinetics includes investigations of how different experimental conditions can influence the speed of a chemical reaction and yield information about the [[reaction mechanism|reaction's mechanism]] and [[transition state]]s, as well as the construction of mathematical models that can describe the characteristics of a chemical reaction. In 1864, [[Peter Waage]] and [[Cato Guldberg]] pioneered the development of chemical kinetics by formulating the [[law of mass action]], which states that the speed of a chemical reaction is proportional to the quantity of the reacting substances.
{{Infobox Album | <!-- See Wikipedia:WikiProject_Albums -->
Name = Cluain Tarbh |
Type = [[Album]] |
Artist = [[Mael Mórdha]] |
Cover = Cluaintarbh.jpg |
Released = September 2005 |
Recorded = 2005, [[Dublin]] |
Genre = [[Celtic metal]] |
Length = 46:50 |
Label = [[Karmageddon Media]] |
Producer = [[Mael Mórdha]] and Mick Richards |
Reviews = [http://www.mael-mordha.com/review_cluain_tarbh.html Metal Hammer (Deutschland) review]
|
Last album = ''Cluain Tarbh EP''<br />(2003) |
This album = '''''Cluain Tarbh'''''<br />(2005) |
Next album = ''Gaeltacht Mael Mórdha''<br />(2007)|
}}


== Rate of reaction ==
'''''Cluain Tarbh''''' ([[Irish language|Irish]] for ''Meadow of Bulls'') is the Irish [[Celtic metal]] band [[Mael Mórdha]]'s debut studio album. It was released in September 2005. The album name, along with the band name, can be written as the cover suggests, using [[Irish orthography#The alphabet|Traditional Irish typography]]. The name would then be, "Cluain Tarḃ."
{{main|reaction rate}}
Chemical kinetics deals with the experimental determination of [[reaction rate]]s from which [[rate law]]s and [[reaction rate constant|rate constants]] are derived. Relatively simple [[rate law]]s exist for [[Rate law#Zero-order reactions|zero order reactions]] (for which reaction rates are independent of concentration), [[first order reaction]]s, and [[second order reaction]]s, and can be derived for others. In consecutive reactions the [[rate-determining step]] often determines the kinetics. In consecutive first order reactions, a [[steady state (chemistry)|steady state]] approximation can simplify the [[rate law]]. The [[activation energy]] for a reaction is experimentally determined through the [[Arrhenius equation]] and the [[Eyring equation]]. The main factors that influence the [[reaction rate]] include: the [[physical state]] of the reactants, the [[concentrations]] of the reactants, the [[temperature]] at which the reaction occurs, and whether or not any [[catalysts]] are present in the reaction.


== Factors affecting reaction rate ==
The album contains eight tracks, the shortest being ''An Tús'' at 0:56 long, and the longest being ''I Am the Wench's Bane'' at 10:15 long. The album is a collection of popular and newly-written material spanning a several years in the band's history.
===Nature of the Reactants===
Depending upon what substances are reacting, the time varies. Acid reactions, the formation of [[salts]], and [[ion exchange]] are fast reactions. When covalent bond formation takes place between the molecules and when large molecules are formed, the reactions tend to be very slow.


===Physical State===
The cover art depicts the [[Battle of Clontarf]] or [http://ga.wikipedia.org/wiki/Cath_Chluain_Tarbh Cath Chluain Tarbh] and this is the primary theme of the album's art and [[title track]]. The man on the left is a native Irish Gael, presumably fighting on the side of [[Brian Bóruma mac Cennétig]], High King of Ireland. The man on the right appears to be a [[Viking]], fighting on the side of the [[King of Leinster]], [[Mael Mórdha]]. Both men are engaged in one-on-one combat against one another.
The [[physical state]] ([[solid]], [[liquid]], or [[gas]]) of a reactant is also an important factor of the rate of change. When reactants are in the same [[phase (matter)|phase]], as in [[aqueous]] [[solution]], thermal motion brings them into contact. However, when they are in different phases, the reaction is limited to the interface between the reactants. Reaction can only occur at their area of contact, in the case of a liquid and a gas, at the surface of the liquid. Vigorous shaking and stirring may be needed to bring the reaction to completion. This means that the more finely divided a solid or liquid reactant, the greater its [[surface area]] per unit [[volume]], and the more contact it makes with the other reactant, thus the faster the reaction. To make an analogy, for example, when one starts a fire, one uses wood chips and small branches—one doesn't start with large logs right away. In organic chemistry [[On water reaction]]s are the exception to the rule that homogeneous reactions take place faster than heterogeneous reactions.


===Concentration===
The album contains lyrics in both [[English language|English]] and [[Irish language|Irish]].
[[Concentration]] plays a very important role in reactions according to the [[collision theory]] of chemical reactions, this is because molecules must collide in order to react together. As the concentration of the reactants increases, the [[frequency]] of the molecules colliding increases, striking each other more frequently by being in closer contact at any given point in time. Imagine two reactants being in a closed container. All the molecules contained within are colliding constantly. By increasing the amount of one or more of the reactants you cause these collisions to happen more often, increasing the reaction rate (Figure 1.1).


==Track listing==
===Temperature===
[[Temperature]] usually has a major effect on the rate of a chemical reaction. Molecules at a higher temperature have more [[thermal energy]]. Although collision frequency is greater at higher temperatures, this alone contributes only a very small proportion to the increase in rate of reaction. Much more important is the fact that the proportion of reactant molecules with sufficient energy to react (energy greater than [[activation energy]]: E > E<sub>a</sub>) is significantly higher and is explained in detail by the [[Maxwell-Boltzmann distribution]] of molecular energies.
#"An Tús" <small>(''The Beginning'') – 0:56</small>
#"Winds of One Thousand Winters" <small> – 5:51</small>
#"The Serpent and the Black Lake" <small> – 6:55</small>
#"Cluain Tarbh" <small>(''Meadow of Bulls'')</small> <small> – 6:45</small>
#"I Am the Wench's Bane" <small> – 10:15</small>
#"The Man All Hate to Love" <small> – 4:21</small>
#"Pauper of Souls" <small> – 5:02</small>
#"Realms of Insanity" <small> – 6:41</small>


The 'rule of thumb' that the rate of chemical reactions double for every 10 °C temperature rise is a common misconception. This may have been generalized from the special case of biological systems, where the [[Q10 (temperature coefficient)]] is often between 1.5 and 2.5.
==Song information==
===An Tús===
"An Tús" is the introduction to the album. It fades in (and out) and is what sounds like a war tune with pipes. This is possibly mimicking what could be the lead-up the [[Battle of Clontarf]], used as a [[metaphor]] for the entire album.


A reaction's kinetics can also be studied with a [[temperature jump]] approach. This involves using a sharp rise in temperature and observing the relaxation rate of an equilibrium process.
===Winds of One Thousand Winters===
This song is the beginning of [[Mael Mórdha]]'s signature [[Gaelic Doom Metal|Ceol Breatha Gaelach]] on the album. This is one of the sample tracks which can be heard on their website. As explained by the band:


===Catalysts===
'' A complex mix of [[orchestration]], layered guitars and [[Drum kit|drums]], this tune expresses the misery felt by the [[ignorance]] expressed towards our [[Gaels|past]] and the hope of a time when a king will rise to unite the [[clann]]s and revive our [[Cultural sterilization|dying culture]]. The music is more textured than Cluain Tarbh as the theme deals with more subtle, deeper feelings.''
[[Image:Activation energy.svg|thumb|right|292px|Generic potential energy diagram showing the effect of a catalyst in an hypothetical exothermic chemical reaction. The presence of the catalyst opens a different reaction pathway (shown in red) with a lower activation energy. The final result and the overall thermodynamics are the same.]]
A [[catalyst]] is a substance that accelerates the rate of a chemical reaction but remains [[chemically]] unchanged afterwards. The catalyst increases rate reaction by providing a different [[reaction mechanism]] to occur with a lower [[activation energy]]. In [[autocatalysis]] a reaction product is itself a catalyst for that reaction leading to [[positive feedback]]. Proteins that act as catalysts in biochemical reactions are called [[enzyme]]s. [[Michaelis-Menten kinetics]] describe the [[enzyme kinetics|rate of enzyme mediated reactions]].


In certain organic molecules specific substituents can have an influence on reaction rate in [[neighbouring group participation]].
Composed: 2003


Agitating or mixing a solution will also accelerate the rate of a chemical reaction, as this gives the particles greater kinetic energy, increasing the number of collisions between reactants and therefore the possibility of successful collisions.
===The Serpent and the Black Lake===
This song is stated by the band to be about the "Lure of [[Love]]".


Increasing the pressure in a gaseous reaction will increase the number of collisions between reactants, increasing the rate of reaction. This is because the [[activity]] of a gas is directly proportional to the partial pressure of the gas. This is similar to the effect of increasing the concentration of a solution.
Composed: 1997
A catalyst does not affect the position of the equilibria, as the catalyst speeds up the backward and forward reactions equally.


===Cluain Tarbh===
== Equilibrium ==
The [[title track]]. This song tells the story of the [[Battle of Clontarf]] and can be considered the centrepiece of the album.


While chemical kinetics is concerned with the rate of a chemical reaction, [[thermodynamics]] determines the extent to which reactions occur. In a [[reversible reaction]], chemical equilibrium is reached when the rates of the forward and reverse reactions are equal and the concentrations of the [[reactant]]s and [[Product (chemistry)|products]] no longer change. This is demonstrated by, for example, the [[Haber-Bosch process]] for combining nitrogen and hydrogen to produce ammonia. [[Chemical clock]] reactions such as the [[Belousov-Zhabotinsky reaction]] demonstrate that component concentrations can oscillate for a long time before finally reaching equilibrium.
From the band's website:
'' This is about the lead up and aftermath of that most famous of battles fought in the Meadow of Bulls (Cluain Tarbh - [[Clontarf, Dublin|Clontarf]]) on [[Good Friday]] 1014 between the then [[Ard Rí|high king]] of [[Éire]], [[Brian Boru]] and the [[king of Leinster]], [[Mael Mórdha]]. The pace is fast and furious (for [[Mael Mórdha]] I mean) with pounding guitars and [[Drum kit|drums]], [[whistle]] and bellowing vocals.''


== Free energy ==
Composed: 2003


In general terms, the [[Thermodynamic free energy|free energy change (ΔG)]] of a reaction determines if a chemical change will take place, but kinetics describes how fast the reaction is. A reaction can be very [[exothermic]] and have a very positive [[entropy]] change but will not happen in practice if the reaction is too slow. If a reactant can produce two different products, the thermodynamically most stable one will generally form except in special circumstances when the reaction is said to be under [[kinetic reaction control]]. The [[Curtin-Hammett principle]] applies when determining the product ratio for two reactants interconverting rapidly, each going to a different product. It is possible to make predictions about reaction rate constants for a reaction from [[Free-energy relationship]]s.
===I Am the Wench's Bane===
This is the longest song on the album. It is said to be "on the relationship between the Wench and Her Bane".


The [[kinetic isotope effect]] is the difference in the rate of a chemical reaction when an atom in one of the reactants is replaced by one of its [[isotope]]s.
Composed: 2001


Chemical kinetics provides information on [[residence time]] and [[heat transfer]] in a [[chemical reactor]] in [[chemical engineering]] and the [[molar mass distribution]] in [[polymer chemistry]].
===The Man All Hate to Love===
From the band's website:
'' If [[Cluain Tarbh (Song)|Cluain Tarbh]] is fast then this song is [[misery]] incarnate. Slow with lots of backing vocals, [[orchestration]] and miserable guitars. The title pretty much explains the theme of this little ditty. If you ever feel down listening to this song will make you realise that nothing could be as terrible as what is expressed here.''


==Applications==
Composed: 2003
The mathematical models that describe chemical reaction kinetics provide chemists and chemical engineers with tools to better understand and describe chemical processes such as food decomposition, microorganism growth, stratospheric ozone decomposition, and the complex chemistry of biological systems. These models can also be used in the design or modification of chemical reactors to optimize product yield, more efficiently separate products, and eliminate environmentally harmful by-products. When performing [[catalytic cracking]] of heavy hydrocarbons into gasoline and light gas, for example, kinetic models can be used to find the temperature and pressure at which the highest yield of heavy hydrocarbons into gasoline will occur.


===Pauper of Souls===
== See also ==
*[[Flame speed]]
This song is stated to be about "the merits of [[belief]] over non-belief".
*[[Detonation]]
*[[Collision theory]]
*[[Arrhenius equation]]
*[[Beer's law]]
*[[Chemical reaction]]
*[[Autocatalytic reactions and order creation]]


== References ==
Composed: 2001


* ''Preparing for the Chemistry AP Exam''. Upper Saddle River, New Jersey: Pearson Education, 2004. 131-134. ISBN 0-536-73157-8
===Realms of Insanity===
This song is apparently "open to interpretation". No further information is given.


== External links ==
Composed: 1996
* [http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch22/rateframe.html Chemical Kinetics]
* [http://www.chm.davidson.edu/ChemistryApplets/kinetics/ Chemistry applets]
* [http://www.science.uwaterloo.ca/~cchieh/cact/c123/chmkntcs.html University of Waterloo]
* [http://www.sci.wsu.edu/idea/ChemKinetics/ Washington state university]
* [http://mark.jelezniak.de/Chemked/index.htm Chemical Kinetics of Gas Phase Reactions]


{{Reaction mechanisms}}
==External links==
*[http://www.mael-mordha.com Official Mael Mórdha Website]


[[Category:2005 albums]]
[[Category:Chemical kinetics| ]]

[[ar:حركية كيميائية]]
[[bs:Hemijska kinetika]]
[[ca:Cinètica química]]
[[cs:Chemická kinetika]]
[[de:Kinetik (Chemie)]]
[[es:Cinética química]]
[[eo:Kemia kinetiko]]
[[fa:سینتیک شیمیایی]]
[[fr:Cinétique chimique]]
[[id:Kinetika kimia]]
[[it:Cinetica chimica]]
[[he:קינטיקה כימית]]
[[lmo:Cinetica chimica]]
[[hu:Reakciókinetika]]
[[ja:反応速度論]]
[[pl:Kinetyka chemiczna]]
[[pt:Cinética química]]
[[ru:Химическая кинетика]]
[[scn:Cinètica chìmica]]
[[sr:Хемијска кинетика]]
[[th:จลนพลศาสตร์เคมี]]
[[zh:化学动力学]]

Revision as of 02:20, 10 October 2008

Reaction rate tends to increase with concentration - a phenomenon explained by collision theory.

Chemical kinetics, also known as reaction kinetics, is the study of rates of chemical processes. Chemical kinetics includes investigations of how different experimental conditions can influence the speed of a chemical reaction and yield information about the reaction's mechanism and transition states, as well as the construction of mathematical models that can describe the characteristics of a chemical reaction. In 1864, Peter Waage and Cato Guldberg pioneered the development of chemical kinetics by formulating the law of mass action, which states that the speed of a chemical reaction is proportional to the quantity of the reacting substances.

Rate of reaction

Chemical kinetics deals with the experimental determination of reaction rates from which rate laws and rate constants are derived. Relatively simple rate laws exist for zero order reactions (for which reaction rates are independent of concentration), first order reactions, and second order reactions, and can be derived for others. In consecutive reactions the rate-determining step often determines the kinetics. In consecutive first order reactions, a steady state approximation can simplify the rate law. The activation energy for a reaction is experimentally determined through the Arrhenius equation and the Eyring equation. The main factors that influence the reaction rate include: the physical state of the reactants, the concentrations of the reactants, the temperature at which the reaction occurs, and whether or not any catalysts are present in the reaction.

Factors affecting reaction rate

Nature of the Reactants

Depending upon what substances are reacting, the time varies. Acid reactions, the formation of salts, and ion exchange are fast reactions. When covalent bond formation takes place between the molecules and when large molecules are formed, the reactions tend to be very slow.

Physical State

The physical state (solid, liquid, or gas) of a reactant is also an important factor of the rate of change. When reactants are in the same phase, as in aqueous solution, thermal motion brings them into contact. However, when they are in different phases, the reaction is limited to the interface between the reactants. Reaction can only occur at their area of contact, in the case of a liquid and a gas, at the surface of the liquid. Vigorous shaking and stirring may be needed to bring the reaction to completion. This means that the more finely divided a solid or liquid reactant, the greater its surface area per unit volume, and the more contact it makes with the other reactant, thus the faster the reaction. To make an analogy, for example, when one starts a fire, one uses wood chips and small branches—one doesn't start with large logs right away. In organic chemistry On water reactions are the exception to the rule that homogeneous reactions take place faster than heterogeneous reactions.

Concentration

Concentration plays a very important role in reactions according to the collision theory of chemical reactions, this is because molecules must collide in order to react together. As the concentration of the reactants increases, the frequency of the molecules colliding increases, striking each other more frequently by being in closer contact at any given point in time. Imagine two reactants being in a closed container. All the molecules contained within are colliding constantly. By increasing the amount of one or more of the reactants you cause these collisions to happen more often, increasing the reaction rate (Figure 1.1).

Temperature

Temperature usually has a major effect on the rate of a chemical reaction. Molecules at a higher temperature have more thermal energy. Although collision frequency is greater at higher temperatures, this alone contributes only a very small proportion to the increase in rate of reaction. Much more important is the fact that the proportion of reactant molecules with sufficient energy to react (energy greater than activation energy: E > Ea) is significantly higher and is explained in detail by the Maxwell-Boltzmann distribution of molecular energies.

The 'rule of thumb' that the rate of chemical reactions double for every 10 °C temperature rise is a common misconception. This may have been generalized from the special case of biological systems, where the Q10 (temperature coefficient) is often between 1.5 and 2.5.

A reaction's kinetics can also be studied with a temperature jump approach. This involves using a sharp rise in temperature and observing the relaxation rate of an equilibrium process.

Catalysts

Generic potential energy diagram showing the effect of a catalyst in an hypothetical exothermic chemical reaction. The presence of the catalyst opens a different reaction pathway (shown in red) with a lower activation energy. The final result and the overall thermodynamics are the same.

A catalyst is a substance that accelerates the rate of a chemical reaction but remains chemically unchanged afterwards. The catalyst increases rate reaction by providing a different reaction mechanism to occur with a lower activation energy. In autocatalysis a reaction product is itself a catalyst for that reaction leading to positive feedback. Proteins that act as catalysts in biochemical reactions are called enzymes. Michaelis-Menten kinetics describe the rate of enzyme mediated reactions.

In certain organic molecules specific substituents can have an influence on reaction rate in neighbouring group participation.

Agitating or mixing a solution will also accelerate the rate of a chemical reaction, as this gives the particles greater kinetic energy, increasing the number of collisions between reactants and therefore the possibility of successful collisions.

Increasing the pressure in a gaseous reaction will increase the number of collisions between reactants, increasing the rate of reaction. This is because the activity of a gas is directly proportional to the partial pressure of the gas. This is similar to the effect of increasing the concentration of a solution. A catalyst does not affect the position of the equilibria, as the catalyst speeds up the backward and forward reactions equally.

Equilibrium

While chemical kinetics is concerned with the rate of a chemical reaction, thermodynamics determines the extent to which reactions occur. In a reversible reaction, chemical equilibrium is reached when the rates of the forward and reverse reactions are equal and the concentrations of the reactants and products no longer change. This is demonstrated by, for example, the Haber-Bosch process for combining nitrogen and hydrogen to produce ammonia. Chemical clock reactions such as the Belousov-Zhabotinsky reaction demonstrate that component concentrations can oscillate for a long time before finally reaching equilibrium.

Free energy

In general terms, the free energy change (ΔG) of a reaction determines if a chemical change will take place, but kinetics describes how fast the reaction is. A reaction can be very exothermic and have a very positive entropy change but will not happen in practice if the reaction is too slow. If a reactant can produce two different products, the thermodynamically most stable one will generally form except in special circumstances when the reaction is said to be under kinetic reaction control. The Curtin-Hammett principle applies when determining the product ratio for two reactants interconverting rapidly, each going to a different product. It is possible to make predictions about reaction rate constants for a reaction from Free-energy relationships.

The kinetic isotope effect is the difference in the rate of a chemical reaction when an atom in one of the reactants is replaced by one of its isotopes.

Chemical kinetics provides information on residence time and heat transfer in a chemical reactor in chemical engineering and the molar mass distribution in polymer chemistry.

Applications

The mathematical models that describe chemical reaction kinetics provide chemists and chemical engineers with tools to better understand and describe chemical processes such as food decomposition, microorganism growth, stratospheric ozone decomposition, and the complex chemistry of biological systems. These models can also be used in the design or modification of chemical reactors to optimize product yield, more efficiently separate products, and eliminate environmentally harmful by-products. When performing catalytic cracking of heavy hydrocarbons into gasoline and light gas, for example, kinetic models can be used to find the temperature and pressure at which the highest yield of heavy hydrocarbons into gasoline will occur.

See also

References

  • Preparing for the Chemistry AP Exam. Upper Saddle River, New Jersey: Pearson Education, 2004. 131-134. ISBN 0-536-73157-8

External links