Battles of El Bruch and Spectral radius: Difference between pages

From Wikipedia, the free encyclopedia
(Difference between pages)
Content deleted Content added
No edit summary
 
سعی (talk | contribs)
Added fa:
 
Line 1: Line 1:
In [[mathematics]], the '''spectral radius''' of a [[matrix (mathematics)|matrix]] or a [[bounded linear operator]] is the [[supremum]] among the [[absolute value]]s of the elements in its [[spectrum of a matrix|spectrum]], which is sometimes denoted by ρ(·).
{{Infobox Military Conflict
|conflict=Battles of El Bruc
|partof=the [[Peninsular War]]
|image=
|caption=
|date=[[June 6]] and [[June 14]], [[1808]]
|place=the [[Bruc]], near [[Barcelona]], [[Spain]]
|result=Spanish victory
|combatant1={{flagicon|France}} [[First French Empire|French Empire]]
|combatant2={{flagicon|Spain|1785}} [[Spain]]
|commander1=[[François Xavier de Schwarz]]
|commander2=[[Antonio Franch de Villafranca]]
|strength1=3,800 regulars
|strength2=2,000 regulars and militia
|casualties1=360 dead,<br>600 wounded<br>60 captured
|casualties2=20 dead<br>80 wounded
}}
{{Campaignbox Peninsular War:1808}}


==Spectral radius of a matrix==
The two '''Battles of the Bruch''' were engagements fought successively between a [[France|French]] column and a body of [[Spain|Spanish]] volunteers and mercenaries on [[June 4]], [[1808]] in the [[Peninsular War]].
Let &lambda;<sub>1</sub>, &hellip;, &lambda;<sub>''s''</sub> be the ([[real number|real]] or [[complex number|complex]]) eigenvalues of a matrix ''A'' &isin; '''C'''<sup>''n'' &times; ''n''</sup>. Then its spectral radius &rho;(''A'') is defined as:


:<math>\rho(A) := \max_i(|\lambda_i|)</math>
The French detachment under General Schwartz emerged from [[Barcelona]] on [[June 4]], advancing in the direction of [[Zaragoza]]&ndash;[[Lleida]]. A rainstorm that day slowed their march considerably; the delay gave time for local Spanish forces, composed of militia from the neighboring villages, [[Catalan people|Catalan]] volunteers (''somatén''), and [[Swiss]] and [[Walloons|Walloon]] soldiers from the Barcelona garrison, to mobilize for action. The Spaniards were led by General Franch and deployed along Bruch Pass.


The following lemma shows a simple yet useful upper bound for the spectral radius of a matrix:
The resulting stand was a success,<ref>Gates, p. 59</ref> and the French under General Schwartz were turned back to Barcelona with the loss of 300 dead and one [[artillery|gun]] captured. The partisans made off with an [[Imperial eagle]], adding to the French humiliation.<ref>Solís, p. 167</ref>


'''Lemma''': Let ''A'' &isin; '''C'''<sup>''n'' &times; ''n''</sup> be a complex-valued matrix, &rho;(''A'') its spectral radius and ||&middot;|| a [[matrix norm|consistent matrix norm]]; then, for each ''k'' &isin; '''N''':
A second French sortie on [[June 14]] succeeded only in putting to the torch several buildings in El Bruc.


:<math>\rho(A)\leq \|A^k\|^{1/k},\ \forall k \in \mathbb{N}.</math>
==Notes==
<div class="references-2column"><references/></div>


''Proof'': Let ('''v''', &lambda;) be an [[eigenvector]]-[[eigenvalue]] pair for a matrix ''A''. By the sub-multiplicative property of the matrix norm, we get:
==References==
*Gates, David. ''The Spanish Ulcer: A History of the Peninsular War.'' Da Capo Press 2001. ISBN 0-306-81083-2
*Rodríguez-Solís, Enrique. ''Los guerrilleros de 1808: Historia popular de la Guerra de la Independencia.'' Vol. I. Calle de Balmes 1895.


::<math>|\lambda|^k\|\mathbf{v}\| = \|\lambda^k \mathbf{v}\| = \|A^k \mathbf{v}\| \leq \|A^k\|\cdot\|\mathbf{v}\|</math>
{{DEFAULTSORT:El Bruc}}
[[Category:Battles of the Peninsular War]]
[[Category:Battles involving Spain]]
[[Category:Conflicts in 1808]]
[[Category:1808 in France]]


:and since '''v''' &ne; 0 for each &lambda; we have
{{Spain-battle-stub}}
{{France-battle-stub}}


:<math>|\lambda|^k\leq \|A^k\|</math>
[[ca:Batalla del Bruc]]

[[es:Batalla del Bruc]]
:and therefore
[[gl:Batalla de El Bruc]]

[[pl:Bitwa pod El Bruc]]
:<math>\rho(A)\leq \|A^k\|^{1/k}\,\,\square</math>

The spectral radius is closely related to the behaviour of the convergence of the power sequence of a matrix; namely, the following theorem holds:

'''Theorem''': Let ''A'' &isin; '''C'''<sup>''n'' &times; ''n''</sup> be a complex-valued matrix and &rho;(''A'') its spectral radius; then

:<math>\lim_{k \to \infty}A^k=0</math> if and only if <math>\rho(A)<1.</math>

Moreover, if &rho;(''A'')>1, <math>\|A^k\|</math> is not bounded for increasing k values.

''Proof'':

(<math>\lim_{k \to \infty}A^k = 0 \Rightarrow \rho(A) < 1</math>)

:Let ('''v''', &lambda;) be an [[eigenvector]]-[[eigenvalue]] pair for matrix ''A''. Since

::<math>A^k\mathbf{v} = \lambda^k\mathbf{v},</math>

:we have:

::{|
|-
|<math>0\,</math>
|<math>= (\lim_{k \to \infty}A^k)\mathbf{v}</math>
|-
|
|<math>= \lim_{k \to \infty}A^k\mathbf{v}</math>
|-
|
|<math>= \lim_{k \to \infty}\lambda^k\mathbf{v}</math>
|-
|
|<math>= \mathbf{v}\lim_{k \to \infty}\lambda^k</math>
|}

:and, since by hypothesis '''v''' &ne; 0, we must have

::<math>\lim_{k \to \infty}\lambda^k = 0</math>

:which implies |&lambda;| < 1. Since this must be true for any eigenvalue &lambda;, we can conclude &rho;(''A'') < 1.

(<math>\rho(A)<1 \Rightarrow \lim_{k \to \infty}A^k = 0</math>)

:From the [[Jordan normal form|Jordan Normal Form]] Theorem, we know that for any complex valued matrix ''A'' &isin; '''C'''<sup>''n'' &times; ''n''</sup>, a non-singular matrix ''V'' &isin; '''C'''<sup>''n'' &times; ''n''</sup> and a block-diagonal matrix ''J'' &isin; '''C'''<sup>''n'' &times; ''n''</sup> exist such that:

::<math>A = VJV^{-1}</math>

:with

::<math>J=\begin{bmatrix}
J_{m_1}(\lambda_1) & 0 & 0 & \cdots & 0 \\
0 & J_{m_2}(\lambda_2) & 0 & \cdots & 0 \\
\vdots & \cdots & \ddots & \cdots & \vdots \\
0 & \cdots & 0 & J_{m_{s-1}}(\lambda_{s-1}) & 0 \\
0 & \cdots & \cdots & 0 & J_{m_s}(\lambda_s)
\end{bmatrix}</math>

:where

::<math>J_{m_i}(\lambda_i)=\begin{bmatrix}
\lambda_i & 1 & 0 & \cdots & 0 \\
0 & \lambda_i & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_i & 1 \\
0 & 0 & \cdots & 0 & \lambda_i
\end{bmatrix}\in \mathbb{C}^{m_i,m_i}, 1\leq i\leq s.</math>

:It is easy to see that

::<math>A^k=VJ^kV^{-1}</math>

:and, since ''J'' is block-diagonal,

::<math>J^k=\begin{bmatrix}
J_{m_1}^k(\lambda_1) & 0 & 0 & \cdots & 0 \\
0 & J_{m_2}^k(\lambda_2) & 0 & \cdots & 0 \\
\vdots & \cdots & \ddots & \cdots & \vdots \\
0 & \cdots & 0 & J_{m_{s-1}}^k(\lambda_{s-1}) & 0 \\
0 & \cdots & \cdots & 0 & J_{m_s}^k(\lambda_s)
\end{bmatrix}</math>

:Now, a standard result on the ''k''-power of an ''m''<sub>''i''</sub> &times; ''m''<sub>''i''</sub> Jordan block states that, for ''k'' &ge; ''m''<sub>''i'' &minus; 1</sub>:

::<math>J_{m_i}^k(\lambda_i)=\begin{bmatrix}
\lambda_i^k & {k \choose 1}\lambda_i^{k-1} & {k \choose 2}\lambda_i^{k-2} & \cdots & {k \choose m_i-1}\lambda_i^{k-m_i+1} \\
0 & \lambda_i^k & {k \choose 1}\lambda_i^{k-1} & \cdots & {k \choose m_i-2}\lambda_i^{k-m_i+2} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_i^k & {k \choose 1}\lambda_i^{k-1} \\
0 & 0 & \cdots & 0 & \lambda_i^k
\end{bmatrix}</math>

:Thus, if &rho;(''A'') < 1 then |&lambda;<sub>''i''</sub>| < 1 &forall; ''i'', so that

::<math>\lim_{k \to \infty}J_{m_i}^k=0\ \forall i</math>

:which implies

::<math>\lim_{k \to \infty}J^k = 0.</math>

:Therefore,

::<math>\lim_{k \to \infty}A^k=\lim_{k \to \infty}VJ^kV^{-1}=V(\lim_{k \to \infty}J^k)V^{-1}=0</math>

On the other side, if &rho;(''A'')>1, there is at least one element in ''J'' which doesn't remain bounded as k increases, so proving the second part of the statement.

::<math>\square</math>

==Theorem (Gelfand's formula, 1941)==
For any [[matrix norm]] ||&middot;||, we have

:<math>\rho(A)=\lim_{k \to \infty}||A^k||^{1/k}.</math>

In other words, the Gelfand's formula shows how the spectral radius of ''A'' gives the asymptotic growth rate of the norm of ''A''<sup>''k''</sup>:

:<math>\|A^k\|\sim\rho(A)^k</math> for <math>k\rightarrow \infty.\,</math>

''Proof'': For any &epsilon; > 0, consider the matrix

::<math>\tilde{A}=(\rho(A)+\epsilon)^{-1}A.</math>

:Then, obviously,

::<math>\rho(\tilde{A}) = \frac{\rho(A)}{\rho(A)+\epsilon} < 1</math>

:and, by the previous theorem,

::<math>\lim_{k \to \infty}\tilde{A}^k=0.</math>

:That means, by the sequence limit definition, a natural number ''N<sub>1</sub>'' &isin; '''N''' exists such that

::<math>\forall k\geq N_1 \Rightarrow \|\tilde{A}^k\| < 1</math>

:which in turn means:

::<math>\forall k\geq N_1 \Rightarrow \|A^k\| < (\rho(A)+\epsilon)^k</math>

:or

::<math>\forall k\geq N_1 \Rightarrow \|A^k\|^{1/k} < (\rho(A)+\epsilon).</math>

:Let's now consider the matrix

::<math>\check{A}=(\rho(A)-\epsilon)^{-1}A.</math>

:Then, obviously,

::<math>\rho(\check{A}) = \frac{\rho(A)}{\rho(A)-\epsilon} > 1</math>

:and so, by the previous theorem,<math>\|\check{A}^k\|</math> is not bounded.

:This means a natural number ''N<sub>2</sub>'' &isin; '''N''' exists such that

::<math>\forall k\geq N_2 \Rightarrow \|\check{A}^k\| > 1</math>

:which in turn means:

::<math>\forall k\geq N_2 \Rightarrow \|A^k\| > (\rho(A)-\epsilon)^k</math>

:or

::<math>\forall k\geq N_2 \Rightarrow \|A^k\|^{1/k} > (\rho(A)-\epsilon).</math>

:Taking

::<math>N:=max(N_1,N_2)</math>

:and putting it all together, we obtain:

::<math>\forall \epsilon>0, \exists N\in\mathbb{N}: \forall k\geq N \Rightarrow \rho(A)-\epsilon < \|A^k\|^{1/k} < \rho(A)+\epsilon</math>

:which, by definition, is

::<math>\lim_{k \to \infty}\|A^k\|^{1/k} = \rho(A).\,\,\square</math>

Gelfand's formula leads directly to a bound on the spectral radius of a product of finitely many matrices, namely assuming that they all commute we obtain
<math>
\rho(A_1 A_2 \ldots A_n) \leq \rho(A_1) \rho(A_2)\ldots \rho(A_n).
</math>

Actually, in case the norm is [[matrix norm|consistent]], the proof shows more than the thesis; in fact, using the previous lemma, we can replace in the limit definition the left lower bound with the spectral radius itself and write more precisely:

::<math>\forall \epsilon>0, \exists N\in\mathbb{N}: \forall k\geq N \Rightarrow \rho(A) \leq \|A^k\|^{1/k} < \rho(A)+\epsilon</math>

:which, by definition, is

:<math>\lim_{k \to \infty}\|A^k\|^{1/k} = \rho(A)^+.</math>

'''Example''': Let's consider the matrix
:<math>A=\begin{bmatrix}
9 & -1 & 2\\
-2 & 8 & 4\\
1 & 1 & 8
\end{bmatrix}</math>

whose eigenvalues are 5, 10, 10; by definition, its spectral radius is &rho;(''A'')=10. In the following table, the values of <math>\|A^k\|^{1/k}</math> for the four most used norms are listed versus several increasing values of k (note that, due to the particular form of this matrix,<math>\|.\|_1=\|.\|_\infty</math>):

<table border="0" cellspacing="0" cellpadding="0" width="756">
<tr>
<td> k </td><td> <math>\|.\|_1=\|.\|_\infty</math> </td><td> <math>\|.\|_F</math> </td><td> <math>\|.\|_2</math> </td>
</tr>
<tr>
<td>&nbsp;</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>15.362291496</td>
<td>10.681145748</td>
</tr>
<tr>
<td>2</td>
<td>12.649110641</td>
<td>12.328294348</td>
<td>10.595665162</td>
</tr>
<tr>
<td>3</td>
<td>11.934831919</td>
<td>11.532450664</td>
<td>10.500980846</td>
</tr>
<tr>
<td>4</td>
<td>11.501633169</td>
<td>11.151002986</td>
<td>10.418165779</td>
</tr>
<tr>
<td>5</td>
<td>11.216043151</td>
<td>10.921242235</td>
<td>10.351918183</td>
</tr>
<tr>
<td><math>\vdots</math></td>
<td><math>\vdots</math></td>
<td><math>\vdots</math></td>
<td><math>\vdots</math></td>
</tr>
<tr>
<td>10</td>
<td>10.604944422</td>
<td>10.455910430</td>
<td>10.183690042</td>
</tr>
<tr>
<td>11</td>
<td>10.548677680</td>
<td>10.413702213</td>
<td>10.166990229</td>
</tr>
<tr>
<td>12</td>
<td>10.501921835</td>
<td>10.378620930</td>
<td>10.153031596</td>
</tr>
<tr>
<td><math>\vdots</math></td>
<td><math>\vdots</math></td>
<td><math>\vdots</math></td>
<td><math>\vdots</math></td>
</tr>
<tr>
<td>20</td>
<td>10.298254399</td>
<td>10.225504447</td>
<td>10.091577411</td>
</tr>
<tr>
<td>30</td>
<td>10.197860892</td>
<td>10.149776921</td>
<td>10.060958900</td>
</tr>
<tr>
<td>40</td>
<td>10.148031640</td>
<td>10.112123681</td>
<td>10.045684426</td>
</tr>
<tr>
<td>50</td>
<td>10.118251035</td>
<td>10.089598820</td>
<td>10.036530875</td>
</tr>
<tr>
<td><math>\vdots</math></td>
<td><math>\vdots</math></td>
<td><math>\vdots</math></td>
<td><math>\vdots</math></td>
</tr>
<tr>
<td>100</td>
<td>10.058951752</td>
<td>10.044699508</td>
<td>10.018248786</td>
</tr>
<tr>
<td>200</td>
<td>10.029432562</td>
<td>10.022324834</td>
<td>10.009120234</td>
</tr>
<tr>
<td>300</td>
<td>10.019612095</td>
<td>10.014877690</td>
<td>10.006079232</td>
</tr>
<tr>
<td>400</td>
<td>10.014705469</td>
<td>10.011156194</td>
<td>10.004559078</td>
</tr>
<tr>
<td><math>\vdots</math></td>
<td><math>\vdots</math></td>
<td><math>\vdots</math></td>
<td><math>\vdots</math></td>
</tr>
<tr>
<td>1000</td>
<td>10.005879594</td>
<td>10.004460985</td>
<td>10.001823382</td>
</tr>
<tr>
<td>2000</td>
<td>10.002939365</td>
<td>10.002230244</td>
<td>10.000911649</td>
</tr>
<tr>
<td>3000</td>
<td>10.001959481</td>
<td>10.001486774</td>
<td>10.000607757</td>
</tr>
<tr>
<td><math>\vdots</math></td>
<td><math>\vdots</math></td>
<td><math>\vdots</math></td>
<td><math>\vdots</math></td>
</tr>
<tr>
<td>10000</td>
<td>10.000587804</td>
<td>10.000446009</td>
<td>10.000182323</td>
</tr>
<tr>
<td>20000</td>
<td>10.000293898</td>
<td>10.000223002</td>
<td>10.000091161</td>
</tr>
<tr>
<td>30000</td>
<td>10.000195931</td>
<td>10.000148667</td>
<td>10.000060774</td>
</tr>
<tr>
<td><math>\vdots</math></td>
<td><math>\vdots</math></td>
<td><math>\vdots</math></td>
<td><math>\vdots</math></td>
</tr>
<tr>
<td>100000</td>
<td>10.000058779</td>
<td>10.000044600</td>
<td>10.000018232 </td>
</tr>
</table>

==Spectral radius of a bounded linear operator==
For a [[bounded linear operator]] ''A'' and the [[operator norm]] ||&middot;||, again we have

:<math>\rho(A) = \lim_{k \to \infty}\|A^k\|^{1/k}.</math>

==Spectral radius of a graph==
The '''spectral radius''' of a [[graph (mathematics)|graph]] is defined to be the spectral radius of its [[adjacency matrix]].

==See also==
* [[Spectral gap]]

== External links ==
* [http://people.csse.uwa.edu.au/gordon/planareig.html Spectral Radius of Planar Graphs]

[[Category:Spectral theory]]
[[Category:Articles containing proofs]]

[[de:Spektralradius]]
[[fa:شعاع طیفی]]
[[fr:Rayon spectral]]
[[it:Raggio spettrale]]
[[pl:Promień spektralny]]

Revision as of 12:44, 11 October 2008

In mathematics, the spectral radius of a matrix or a bounded linear operator is the supremum among the absolute values of the elements in its spectrum, which is sometimes denoted by ρ(·).

Spectral radius of a matrix

Let λ1, …, λs be the (real or complex) eigenvalues of a matrix ACn × n. Then its spectral radius ρ(A) is defined as:

The following lemma shows a simple yet useful upper bound for the spectral radius of a matrix:

Lemma: Let ACn × n be a complex-valued matrix, ρ(A) its spectral radius and ||·|| a consistent matrix norm; then, for each kN:

Proof: Let (v, λ) be an eigenvector-eigenvalue pair for a matrix A. By the sub-multiplicative property of the matrix norm, we get:

and since v ≠ 0 for each λ we have
and therefore

The spectral radius is closely related to the behaviour of the convergence of the power sequence of a matrix; namely, the following theorem holds:

Theorem: Let ACn × n be a complex-valued matrix and ρ(A) its spectral radius; then

if and only if

Moreover, if ρ(A)>1, is not bounded for increasing k values.

Proof:

()

Let (v, λ) be an eigenvector-eigenvalue pair for matrix A. Since
we have:
and, since by hypothesis v ≠ 0, we must have
which implies |λ| < 1. Since this must be true for any eigenvalue λ, we can conclude ρ(A) < 1.

()

From the Jordan Normal Form Theorem, we know that for any complex valued matrix ACn × n, a non-singular matrix VCn × n and a block-diagonal matrix JCn × n exist such that:
with
where
It is easy to see that
and, since J is block-diagonal,
Now, a standard result on the k-power of an mi × mi Jordan block states that, for kmi − 1:
Thus, if ρ(A) < 1 then |λi| < 1 ∀ i, so that
which implies
Therefore,

On the other side, if ρ(A)>1, there is at least one element in J which doesn't remain bounded as k increases, so proving the second part of the statement.

Theorem (Gelfand's formula, 1941)

For any matrix norm ||·||, we have

In other words, the Gelfand's formula shows how the spectral radius of A gives the asymptotic growth rate of the norm of Ak:

for

Proof: For any ε > 0, consider the matrix

Then, obviously,
and, by the previous theorem,
That means, by the sequence limit definition, a natural number N1N exists such that
which in turn means:
or
Let's now consider the matrix
Then, obviously,
and so, by the previous theorem, is not bounded.
This means a natural number N2N exists such that
which in turn means:
or
Taking
and putting it all together, we obtain:
which, by definition, is

Gelfand's formula leads directly to a bound on the spectral radius of a product of finitely many matrices, namely assuming that they all commute we obtain

Actually, in case the norm is consistent, the proof shows more than the thesis; in fact, using the previous lemma, we can replace in the limit definition the left lower bound with the spectral radius itself and write more precisely:

which, by definition, is

Example: Let's consider the matrix

whose eigenvalues are 5, 10, 10; by definition, its spectral radius is ρ(A)=10. In the following table, the values of for the four most used norms are listed versus several increasing values of k (note that, due to the particular form of this matrix,):

k
 
1 14 15.362291496 10.681145748
2 12.649110641 12.328294348 10.595665162
3 11.934831919 11.532450664 10.500980846
4 11.501633169 11.151002986 10.418165779
5 11.216043151 10.921242235 10.351918183
10 10.604944422 10.455910430 10.183690042
11 10.548677680 10.413702213 10.166990229
12 10.501921835 10.378620930 10.153031596
20 10.298254399 10.225504447 10.091577411
30 10.197860892 10.149776921 10.060958900
40 10.148031640 10.112123681 10.045684426
50 10.118251035 10.089598820 10.036530875
100 10.058951752 10.044699508 10.018248786
200 10.029432562 10.022324834 10.009120234
300 10.019612095 10.014877690 10.006079232
400 10.014705469 10.011156194 10.004559078
1000 10.005879594 10.004460985 10.001823382
2000 10.002939365 10.002230244 10.000911649
3000 10.001959481 10.001486774 10.000607757
10000 10.000587804 10.000446009 10.000182323
20000 10.000293898 10.000223002 10.000091161
30000 10.000195931 10.000148667 10.000060774
100000 10.000058779 10.000044600 10.000018232

Spectral radius of a bounded linear operator

For a bounded linear operator A and the operator norm ||·||, again we have

Spectral radius of a graph

The spectral radius of a graph is defined to be the spectral radius of its adjacency matrix.

See also

External links