User:Thefourdotelipsis/MC and Lefschetz manifold: Difference between pages

From Wikipedia, the free encyclopedia
(Difference between pages)
Content deleted Content added
No edit summary
 
Corrected inclusion between strong Lefschetz manifolds and Lefschetz manifolds
 
Line 1: Line 1:
In [[mathematics]], a <b>Lefschetz manifold</b> is a particular kind of [[symplectic manifold]].
{{Navbox

| name = Michael Apted
==Definitions==
| title = [[Michael Apted]]
Let <math>M</math> be a (<math>2n</math>)-dimensional smooth manifold. Each element
| group1 = 1970s

| list1 = {{nowrap| ''[[The Triple Echo]]'' •}} {{nowrap| ''[[Stardust (1974 film)|Stardust]]'' •}} {{nowrap| ''[[The Squeeze (1977 film)|The Squeeze]]'' •}} {{nowrap| ''[[Agatha (film)|Agatha]]''}}
:<math>[\omega] \in H_{DR}^2 (M)</math>
| group2 = 1980s

| list2 = {{nowrap| ''[[Coal Miner's Daughter]]'' •}} {{nowrap| ''[[Continental Divide (film)|Continental Divide]]'' •}} {{nowrap| ''[[Gorky Park (film)|Gorky Park]]'' •}} {{nowrap| ''[[Firstborn (film)|Firstborn]]'' •}} {{nowrap| ''[[Bring on the Night (film)|Bring on the Night]]'' •}} {{nowrap| ''[[Critical Condition (film)|Critical Condition]]'' •}} {{nowrap| ''[[Gorillas in the Mist: The Story of Dian Fossey]]''}}
of the second [[de Rham cohomology]] space of <math>M</math> induces a map
| group3 = 1990s

| list3 = {{nowrap| ''[[Class Action (1991 film)|Class Action]]'' •}} {{nowrap| ''[[Thunderheart]]'' •}} {{nowrap| ''[[Incident at Oglala]]'' •}} {{nowrap| ''[[Blink (film)|Blink]]'' •}} {{nowrap| ''[[Moving the Mountain]]'' •}} {{nowrap| ''[[Nell]]'' •}} {{nowrap| ''[[Extreme Measures]]'' •}} {{nowrap| ''[[Inspirations]]'' •}} {{nowrap| ''[[Me & Isaac Newton]]'' •}} {{nowrap| ''[[The World Is Not Enough]]''}}
:<math>L_{[\omega]}: H_{DR} (M) \to H_{DR} (M), [\alpha] \mapsto [\omega \wedge \alpha]</math>
| group4 = 2000s

| list4 = {{nowrap| ''[[Enigma (2001 film)|Enigma]]'' •}} {{nowrap| ''[[Enough]]'' •}} {{nowrap| ''[[Amazing Grace (2006 film)|Amazing Grace]]'' •}} {{nowrap| ''[[The Official Film of the 2006 FIFA World Cup]]'' (Video) •}} {{nowrap| ''[[The Power of the Game]]''}}
called the '''Lefschetz map''' of <math>[\omega]</math>. Letting <math>L_{[\omega]}^i</math> be the <math>i</math>th iteration of <math>L_{[\omega]}</math>, we have for each <math>0 \leq i \leq n</math> a map
| group5 = Television

| list5 = {{nowrap| "[[The Dustbinmen]]" (1968) •}} {{nowrap| "[[ITV Playhouse]]" (1968 - 1971) •}} {{nowrap| "[[Big Breadwinner Hog]]" (1969) •}} {{nowrap| [[Up series]] (1970 - ) •}} {{nowrap| "[[The Lovers (TV series)|The Lovers]]" (1970) •}} {{nowrap| "[[ITV Saturday Night Theatre]]" (1971 - 1972) •}} {{nowrap| "[[Follyfoot]]" (1971 - 1972) •}} {{nowrap| "[[Play for Today]]" (1972 - 1977) •}} {{nowrap| ''[[Joy (TV movie)|Joy]]'' (1972) •}} {{nowrap| "[[Thirty-Minute Theatre]]" (1972) •}} {{nowrap| ''[[Buggins' Ermine]]'' (1972) •}} {{nowrap| "[[Black and Blue (TV series)|Black and Blue]]" (1973) •}} {{nowrap| "[[Shades of Greene]]" (1975) •}} {{nowrap| "[[Laurence Olivier Presents]]" (1976) •}} {{nowrap| "[[The Paradise Run]]" (1976)•}} {{nowrap| ''[[P'tang, Yang, Kipperbang]]'' (1982) •}} {{nowrap| ''[[Haunted: Poor Girl]]'' (1986) •}} {{nowrap| ''[[The Long Way Home (1989 film)|The Long Way Home]]'' (1989) •}} {{nowrap| ''[[Always Outnumbered]]'' (1998) •}} {{nowrap| ''[[Nathan Dixon (TV movie)|Nathan Dixon]]'' (1999)}} {{nowrap| "[[Married in America]]" (2002 - 2006) •}} {{nowrap| "[[Blind Justice (TV series)]]" (2005) •}} {{nowrap| "[[Rome (TV series)|Rome]]" (2005) •}} {{nowrap| "[[What About Brian]]" (2006)}}
:<math>L_{[\omega]}^i : H_{DR}^{n-i}(M) \to H_{DR}^{n+i}(M)</math>.
}}<noinclude>

[[Catego ry:Film director templates|Apted Michael]]
If <math>M</math> is [[compact]] and [[oriented]], then [[Poincaré duality]] tells us that <math>H_{DR}^{n-i}(M)</math> and <math>H_{DR}^{n+i}(M)</math> are vector spaces of the same dimension, so in these cases it is natural to ask whether or not the various iterations of Lefschetz maps are isomorphisms.
</noinclude>

If

:<math>L_{[\omega]}^{n-1}: H_{DR}^1(M) \to H_{DR}^{2n-1}</math>

and

:<math>L_{[\omega]}^{n}: H_{DR}^0(M) \to H_{DR}^{2n}</math>

are isomorphisms, then <math>[\omega]</math> is a '''Lefschetz element''', or '''Lefschetz class'''. If

:<math>L_{[\omega]}^i : H_{DR}^{n-i}(M) \to H_{DR}^{n+i}(M)</math>

is an isomorphism for all <math>0 \leq i \leq n</math>, then <math>[\omega]</math> is a '''strong Lefschetz element''', or a '''strong Lefschetz class'''.

Let <math>(M,\omega)</math> be a <math>2n</math>-dimensional [[symplectic manifold]]. (Symplectic manifolds are always orientable, although certainly not always compact.) Then <math>(M,\omega)</math> is a '''Lefschetz manifold''' if <math>[\omega]</math> is a Lefschetz element, and <math>(M,\omega)</math> is a '''strong Lefschetz manifold''' if <math>[\omega]</math> is a strong Lefschetz element.

==Where to find Lefschetz manifolds==

The real manifold underlying any [[Kähler manifold]] is a symplectic manifold. The [[strong Lefschetz theorem]] tells us that it is also a strong Lefschetz manifold, and hence a Lefschetz manifold. Therefore we have the following chain of inclusions.

<center>{Kähler manifolds} <math>\subset</math> {strong Lefschetz manifolds} <math>\subset</math>{Lefschetz manifolds} <math>\subset</math> {symplectic manifolds}</center>

In <ref>C. Benson and C. Gordon, Kahler and symplectic structures on nilmanifolds, <i>Topology</i> 27 (1988), 513-518.</ref>, Chal Benson and Carolyn S. Gordon proved that if a [[compact]] [[nilmanifold]] is a Lefschetz manifold, then it is diffeomorphic to a [[torus]]. The fact that there are nilmanifolds that are not diffeomorphic to a torus shows that there is some space between Kähler manifolds and symplectic manifolds, but the class of nilmanifolds fails to show any differences between Kähler manifolds, Lefschetz manifolds, and strong Lefschetz manifolds.

Gordan and Benson conjectured that if a [[compact]] [[complete solvmanifold]] admits a Kähler structure, then it is diffeomorphic to a [[torus]]. This has been proved. Furthermore, many examples have been found of solvmanifolds that are strong Lefschetz but not Kähler, and solvmanifolds that are Lefschetz but not strong Lefschetz. Such examples can be found in <ref>Takumi Yamada, Examples of Compact Lefschetz Solvmanifolds, <i>Tokyo J. Math</i> Vol. 25, No. 2, (2002), 261-283.</ref>.

==Notes==

<references/>

[[Category:Symplectic geometry]]

Revision as of 06:09, 13 October 2008

In mathematics, a Lefschetz manifold is a particular kind of symplectic manifold.

Definitions

Let be a ()-dimensional smooth manifold. Each element

of the second de Rham cohomology space of induces a map

called the Lefschetz map of . Letting be the th iteration of , we have for each a map

.

If is compact and oriented, then Poincaré duality tells us that and are vector spaces of the same dimension, so in these cases it is natural to ask whether or not the various iterations of Lefschetz maps are isomorphisms.

If

and

are isomorphisms, then is a Lefschetz element, or Lefschetz class. If

is an isomorphism for all , then is a strong Lefschetz element, or a strong Lefschetz class.

Let be a -dimensional symplectic manifold. (Symplectic manifolds are always orientable, although certainly not always compact.) Then is a Lefschetz manifold if is a Lefschetz element, and is a strong Lefschetz manifold if is a strong Lefschetz element.

Where to find Lefschetz manifolds

The real manifold underlying any Kähler manifold is a symplectic manifold. The strong Lefschetz theorem tells us that it is also a strong Lefschetz manifold, and hence a Lefschetz manifold. Therefore we have the following chain of inclusions.

{Kähler manifolds} {strong Lefschetz manifolds} {Lefschetz manifolds} {symplectic manifolds}

In [1], Chal Benson and Carolyn S. Gordon proved that if a compact nilmanifold is a Lefschetz manifold, then it is diffeomorphic to a torus. The fact that there are nilmanifolds that are not diffeomorphic to a torus shows that there is some space between Kähler manifolds and symplectic manifolds, but the class of nilmanifolds fails to show any differences between Kähler manifolds, Lefschetz manifolds, and strong Lefschetz manifolds.

Gordan and Benson conjectured that if a compact complete solvmanifold admits a Kähler structure, then it is diffeomorphic to a torus. This has been proved. Furthermore, many examples have been found of solvmanifolds that are strong Lefschetz but not Kähler, and solvmanifolds that are Lefschetz but not strong Lefschetz. Such examples can be found in [2].

Notes

  1. ^ C. Benson and C. Gordon, Kahler and symplectic structures on nilmanifolds, Topology 27 (1988), 513-518.
  2. ^ Takumi Yamada, Examples of Compact Lefschetz Solvmanifolds, Tokyo J. Math Vol. 25, No. 2, (2002), 261-283.