Atomic force microscopy

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 212.254.176.59 (talk) at 11:05, 2 June 2006 (→‎Manufacturers). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Block Diagram of Atomic Force Microscope
Block Diagram of Atomic Force Microscope
Topographic scan of a glass surface
Topographic scan of a glass surface

AFM

The atomic force microscope (AFM) is a very high-resolution type of scanning probe microscope. The AFM was invented by Binnig, Quate and Gerber in 1985, and is one of the foremost tools for the manipulation of matter at the nanoscale.

The AFM consists of a cantilever (probe) with a sharp tip at its end that is used to scan the specimen surface. The probe is typically silicon or silicon nitride with a tip radius of curvature on the order of nanometers. When the tip is brought into close proximity of a sample surface, the Van der Waals force between the tip and the sample leads to a deflection of the cantilever according to Hooke's law. Typically, the deflection is measured using a laser spot reflected from the top of the cantilever into an array of photodiodes. However a laser detection system can be expensive and bulky; an alternative method in determining cantilever deflection is by using piezoresistive AFM probes. These probes are fabricated with piezoresistive elements that act as a strain gage. Using a Wheatstone bridge, strain in the AFM probe due to deflection can be measured, but this method is not as sensitive as laser deflection.

If the tip were scanned at a constant height, there would be a risk that the tip would collide with the surface, causing damage. Hence, in most cases a feedback mechanism is employed to adjust the tip-to-sample distance to maintain a constant force between the tip and the sample. Generally, the sample is mounted on a piezoelectric tube, that can move the sample in the z direction for maintaining a constant force, and the x and y directions for scanning the sample. The resulting map of s(x,y) represents the topography of the sample.

Over the years additional modes of operation have been developed for the AFM. The primary modes of operation are contact mode, non-contact mode, and dynamic contact mode. In the contact mode operation, the force between the tip and the surface is kept constant during scanning by maintaining a constant deflection. In the non-contact mode, the cantilever is externally oscillated at or close to its resonance frequency. The oscillation is modified by the tip-sample interaction forces; these changes in oscillation with respect to the external reference oscillation provide information about the sample's characteristics. Because most samples develop a liquid meniscus layer, keeping the probe tip close enough to the sample for these inter-atomic forces to become detectable while preventing the tip from sticking to the surface presents a major hurdle for non-contact mode in ambient conditions. Dynamic contact mode, was developed to bypass this problem (Zhong et al). In dynamic contact mode, the cantilever is oscillated such that it comes in contact with the sample with each cycle, and then enough force is applied to detach the tip from the sample.

Schemes for non-contact and dynamic contact mode operation include frequency modulation and the more common amplitude modulation. In frequency modulation, changes in the oscillation frequency provide information about a sample's characteristics. In amplitude modulation (better known as intermittent contact, semi-contact, or tapping mode), changes in the oscillation amplitude yield topographic information about the sample. Additionally, changes in the phase of oscillation under tapping mode can be used to discriminate between different types of materials on the surface.

The AFM has several advantages over the scanning electron microscope (SEM). The AFM can produce images of materials as small as 1nm, while the SEM is limited to around 100nm. Unlike the electron microscope which provides a two-dimensional projection or a two-dimensional image of a sample, the AFM provides a true three-dimensional surface profile. Additionally, samples viewed by AFM do not require any special treatments (such as metal/carbon coatings) that would irreversibly change or damage the sample. While an electron microscope needs an expensive vacuum environment for proper operation, most AFM modes can work perfectly well in ambient air or even a liquid environment. This makes it possible to study biological macromolecules and even living organisms.

The main disadvantage of AFM compared with the scanning electron microscope (SEM) is the image size. The SEM can image an area on the order of millimetres by millimetres with a depth of field on the order of millimetres. The AFM can only image a maximum height on the order of micrometres and a maximum scanning area of around 150 by 150 micrometres. At high resolution, the quality of an image is limited by the radius of curvature of the probe tip, and an incorrect choice of tip for the required resolution can lead to image artifacts. Traditionally the AFM could not scan images as fast as an SEM, requiring several minutes for a typical scan, while an SEM is capable of scanning at near real-time (although at relatively low quality) after the chamber is evacuated. New advances, however, are being made in what is being termed videoAFM, where reasonable quality images are being obtained at video rate - faster than the average SEM.

See also

References

  • Q. Zhong, D. Innis, K. Kjoller, V.B. Elings, Surf. Sci. Lett. 290, L688 (1993).
  • Peter Hinterdorfer & Yves F Dufrêne VOL.3 NO.5 | MAY 2006 | NATURE METHODS

Template:Link FA

External links

Manufacturers