Xenorhabdus: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m →‎Perspectives: clean up, replaced: Journal Of → Journal of using AWB
Ref cleanup assisted by Citation bot, moved species list to taxobox and added wikilinks.
Line 7: Line 7:
| genus = '''''Xenorhabdus'''''
| genus = '''''Xenorhabdus'''''
| genus_authority = Thomas & Poinar, 1979
| genus_authority = Thomas & Poinar, 1979
| subdivision_ranks = Species
| subdivision = ''[[Xenorhabdus poinarii]]''
<br/>''[[Xenorhabdus ehlersii]]''
<br/>''[[Xenorhabdus griffiniae]]''
<br/>''[[Xenorhabdus ishibashii]]''
<br/>''[[Xenorhabdus kozododoii]]''
<br/>''[[Xenorhabdus doucetiae]]''
<br/>''[[Xenorhabdus romanii]]''
<br/>''[[Xenorhabdus magdadelensis]]''
<br/>''[[Xenorhabdus japonica]]''
<br/>''[[Xenorhabdus vietnamensis]]''
<br/>''[[Xenorhabdus miraniensis]]''
<br/>''[[Xenorhabdus khoisanensis]]''
<br/>''[[Xenorhabdus beddingii]]''
<br/>''[[Xenorhabdus mauleonii]]''
<br/>''[[Xenorhabdus szentirmaii]]''
<br/>''[[Xenorhabdus nematofila]]''
<br/>''[[Xenorhabdus koppenhoeferi]]''
<br/>''[[Xenorhabdus hominickii]]''
<br/>''[[Xenorhabdus bovienii]]''
<br/>''[[Xenorhabdus stockiae]]''
<br/>''[[Xenorhabdus innexi]]''
<br/>''[[Xenorhabdus cabanillasii]]''
<br/>''[[Xenorhabdus budapestensis]]''
<br/>''[[Xenorhabdus indica]]''
}}
}}
'''''Xenorhabdus''''' is a genus of motile, gram-negative bacteria from the family of the Enterobacteriaceae. It has the particularity that all the species of the genus live in symbiosis with soil entomopathogenic nematodes from the genus ''[[Steinernema]]''.<ref>{{Cite journal
'''''Xenorhabdus''''' is a genus of motile, gram-negative bacteria from the family of the Enterobacteriaceae. It has the particularity that all the species of the genus live in symbiosis with soil entomopathogenic nematodes from the genus ''[[Steinernema]]''.<ref>{{Cite journal
Line 12: Line 37:
| issue = 11
| issue = 11
| pages = e27909
| pages = e27909
| author1 = John M. Chaston |author2=Garret Suen |author3=Sarah L. Tucker |author4=Aaron W. Andersen |author5=Archna Bhasin |author6=Edna Bode |author7=Helge B. Bode |author8=Alexander O. Brachmann |display-authors=etal
| last = Chaston
| first = John M.
| coauthors = Garret Suen, Sarah L. Tucker, Aaron W. Andersen, Archna Bhasin, Edna Bode, Helge B. Bode, Alexander O. Brachmann, Charles E. Cowles, Kimberly N. Cowles, Creg Darby, Limaris de Léon, Kevin Drace, Zijin Du, Alain Givaudan, Erin E. Herbert Tran, Kelsea A. Jewell, Jennifer J. Knack, Karina C. Krasomil-Osterfeld, Ryan Kukor, Anne Lanois, Phil Latreille, Nancy K. Leimgruber, Carolyn M. Lipke, Renyi Liu, Xiaojun Lu, Eric C. Martens, Pradeep R. Marri, Claudine Médigue, Megan L. Menard, Nancy M. Miller, Nydia Morales-Soto, Stacie Norton, Jean-Claude Ogier, Samantha S. Orchard, Dongjin Park, Youngjin Park, Barbara A. Qurollo, Darby Renneckar Sugar, Gregory R. Richards, Zoé Rouy, Brad Slominski, Kathryn Slominski, Holly Snyder, Brian C. Tjaden, Ransome van der Hoeven, Roy D. Welch, Cathy Wheeler, Bosong Xiang, Brad Barbazuk, Sophie Gaudriault, Brad Goodner, Steven C. Slater, Steven Forst, Barry S. Goldman, Heidi Goodrich-Blair
| title = The Entomopathogenic Bacterial Endosymbionts Xenorhabdus and Photorhabdus: Convergent Lifestyles from Divergent Genomes
| title = The Entomopathogenic Bacterial Endosymbionts Xenorhabdus and Photorhabdus: Convergent Lifestyles from Divergent Genomes
| journal = PLoS ONE
| journal = PLoS ONE
Line 20: Line 43:
| date = 2011-11-18
| date = 2011-11-18
| doi=10.1371/journal.pone.0027909
| doi=10.1371/journal.pone.0027909
| pmid = 22125637
| pmc = 3220699
| url = http://dx.doi.org/10.1371/journal.pone.0027909
| url = http://dx.doi.org/10.1371/journal.pone.0027909
}}</ref>
}}</ref>


Although no free-living forms of Xenorhabdus have ever been isolated outside of the nematode host, the benefits for the bacteria are still unknown.
Although no free-living forms of Xenorhabdus have ever been isolated outside of the nematode host, the benefits for the bacteria are still unknown.
However, it has been demonstrated that the nematode can't establish within his insect host without the bacteria.<ref>{{Cite journal
However, it has been demonstrated that the nematode can't establish within his insect host without the bacteria.<ref name=Ogier2014>{{Cite journal
| volume = 6
| volume = 6
| issue = 6
| issue = 6
Line 30: Line 55:
| last = Gaudriault S.
| last = Gaudriault S.
| first = Ogier J.C.
| first = Ogier J.C.
| coauthors = Pagès S., Bisch G., Chiapello H., Médigue C., Rouy Z., Teyssier C., Vincent S., Tailliez P., Guivaudan A.
| author2 = Pagès S. |author3= Bisch G. |author4= Chiapello H. |author5=Médigue C. |author6=Rouy Z. |author7=Teyssier C. |author8=Vincent S. |author9=Tailliez P. |author10=Guivaudan A.
| title = Attenued Virulence And Genomic Reductive Evolution In The Entomopathogenic Bacterial Symbiont Species, Xenorhabdus poinarii.
| title = Attenued Virulence And Genomic Reductive Evolution In The Entomopathogenic Bacterial Symbiont Species, Xenorhabdus poinarii
| journal = Genome Biology And Evolution
| journal = Genome Biology and Evolution
| accessdate = 2014-05-30
| accessdate = 2014-05-30
| date = 2014-07-25
| date = 2014-07-25
| doi=10.1093/gbe/evu119
| doi=10.1093/gbe/evu119
| pmid = 24904010
| pmc = 4079199
| url = http://gbe.oxfordjournals.org
| url = http://gbe.oxfordjournals.org
}}</ref>
}}</ref>


The tripartite Xenorhabdus-nematode-insect interaction represents a model system in which both [[Mutualism (biology)|mutualistic]] and [[pathogenesis|pathogenic]] processes can be studied in a single bacterial species.
The tripartite Xenorhabdus-nematode-insect interaction represents a model system in which both [[Mutualism (biology)|mutualistic]] and [[pathogenesis|pathogenic]] processes can be studied in a single bacterial species.
In laboratory, some species are virulent directly injected within the insect host, whereas others species need the nematode to penetrate into the insect.<ref>{{Cite journal
In laboratory, some species are virulent directly injected within the insect host, whereas others species need the nematode to penetrate into the insect.<ref name=Ogier2014/>
| volume = 6
| issue = 6
| pages = 1495–1513
| last = Gaudriault S.
| first = Ogier J.C.
| coauthors = Pagès S., Bisch G., Chiapello H., Médigue C., Rouy Z., Teyssier C., Vincent S., Tailliez P., Guivaudan A.
| title = Attenued Virulence And Genomic Reductive Evolution In The Entomopathogenic Bacterial Symbiont Species, Xenorhabdus poinarii.
| journal = Genome Biology And Evolution
| accessdate = 2014-05-30
| date = 2014-07-25
| doi=10.1093/gbe/evu119
| url = http://gbe.oxfordjournals.org
}}</ref>


==Lifecycle==
==Lifecycle==
Line 70: Line 84:


<!-- Commented out because image was deleted: [[File:Xenorhabdus phylogeny.jpg|thumb|Xenorhabdus phylogeny]] -->
<!-- Commented out because image was deleted: [[File:Xenorhabdus phylogeny.jpg|thumb|Xenorhabdus phylogeny]] -->

==List of species==

* ''X. poinarii''
* ''X. ehlersii''
* ''X. griffiniae''
* ''X. ishibashii''
* ''X. kozododoii''
* ''X. doucetiae''
* ''X. romanii''
* ''X. magdadelensis''
* ''X. japonica''
* ''X. vietnamensis''
* ''X. miraniensis''
* ''X. khoisanensis''
* ''X. beddingii''
* ''X. mauleonii''
* ''X. szentirmaii''
* ''X. nematofila''
* ''X. koppenhoeferi''
* ''X. hominickii''
* ''X. bovienii''
* ''X. stockiae''
* ''X. innexi''
* ''X. cabanillasii''
* ''X. budapestensis''
* ''X. indica''


==Biological pest control==
==Biological pest control==
Line 116: Line 103:
| last = Wolf S.L.
| last = Wolf S.L.
| first = Furgani G.
| first = Furgani G.
| coauthors = Böszörményi E., Fodor A., Máthé-Fodor A., Forst S., Hogan J.S., Katona Z., Klein M.G., Stackebrandt E., Szentirmai A., Sztaricskai F.
| author2=Böszörményi E. |author3=Fodor A. |author4=Máthé-Fodor A. |author5=Forst S. |author6=Hogan J.S. |author7=Katona Z. |author8=Klein M.G. |author9=Stackebrandt E. |author10=Szentirmai A. |author11=Sztaricskai F.
| title = Xenorhabdus Antibiotics: a comparative analysis and potential utility for controlling mastisis caused by bacteria
| title = Xenorhabdus Antibiotics: a comparative analysis and potential utility for controlling mastisis caused by bacteria
| journal = Journal of Applied Microbiology
| journal = Journal of Applied Microbiology

Revision as of 22:30, 22 May 2016

Xenorhabdus
Scientific classification
Kingdom:
Phylum:
Class:
Order:
Family:
Genus:
Xenorhabdus

Thomas & Poinar, 1979
Species

Xenorhabdus poinarii
Xenorhabdus ehlersii
Xenorhabdus griffiniae
Xenorhabdus ishibashii
Xenorhabdus kozododoii
Xenorhabdus doucetiae
Xenorhabdus romanii
Xenorhabdus magdadelensis
Xenorhabdus japonica
Xenorhabdus vietnamensis
Xenorhabdus miraniensis
Xenorhabdus khoisanensis
Xenorhabdus beddingii
Xenorhabdus mauleonii
Xenorhabdus szentirmaii
Xenorhabdus nematofila
Xenorhabdus koppenhoeferi
Xenorhabdus hominickii
Xenorhabdus bovienii
Xenorhabdus stockiae
Xenorhabdus innexi
Xenorhabdus cabanillasii
Xenorhabdus budapestensis
Xenorhabdus indica

Xenorhabdus is a genus of motile, gram-negative bacteria from the family of the Enterobacteriaceae. It has the particularity that all the species of the genus live in symbiosis with soil entomopathogenic nematodes from the genus Steinernema.[1]

Although no free-living forms of Xenorhabdus have ever been isolated outside of the nematode host, the benefits for the bacteria are still unknown. However, it has been demonstrated that the nematode can't establish within his insect host without the bacteria.[2]

The tripartite Xenorhabdus-nematode-insect interaction represents a model system in which both mutualistic and pathogenic processes can be studied in a single bacterial species. In laboratory, some species are virulent directly injected within the insect host, whereas others species need the nematode to penetrate into the insect.[2]

Lifecycle

1. In the non-infestant-stage nematode living in the soil, Xenorhabdus spp. are carried in a specialized region of the intestine, termed the receptacle.

2. At the third-stage of development, the infective juvenile (IJs) invade the hemocoel of susceptible insect hosts.

3. The bacteria are released in the insect hemocoel, where they overcome the insect's defense systems and produce numerous virulence factors such as hemolysin and cytotoxin. They participate in suppressing insect immunity and killing the host.

4. The bacteria proliferate to high levels in the insect cadaver and produce diverse antimicrobial compounds that suppress the growth of antagonistic microorganisms. Xenorhabdus spp. also secrete an array of exoenzymes that stimulate macromolecular degradation, the products of which, together with the bacteria themselves, are thought to provide a nutrient base for nematode growth and reproduction.

5. When nematode numbers become high and nutrients become limiting in the insect cadaver, nematode progeny re-associate with bacteria and differentiate into colonized, non-feeding IJs that emerge into the soil to forage for new hosts.

Phylogeny

Biological pest control

The mutualistic association between Xenorhabdus and Steinernema represent an insectidical complex, active against a large range of insect pests. Indeed, the complex is used in biological pest control, and is very efficient against insects such as Spodoptera exigua (Lepidoptera), Cydia pomonella (Lepidoptera), Leptinotarsa decemlineata (Coleoptera), Tipulidae family (Diptera). Xenorhabdus nematofila is the most used species in biological control, in association with Steinernema carpocapse and Steinernema feltiae.

The pathogenicity of the complex is "species-specific", which means that the complex can only be active against a specific range of insects.

The Steinernema-Xenorhabdus association is currently sold as biocontrol agent by private companies, like Biobest,SUMI AGRO, Biosafe.

Perspectives

A study carried out by Furgani G. & Al [3] suggests that the antibiotic compounds produced by Xenorhabdus to preserve the insect cadaver from others bacteria may be used in the aim of controlling mastitis caused by bacteria. Indeed, Xenorhabdus budapestensis, X. szentirmaii and X. nematofila appear to be efficient against pathogens such as Staphylocuccus aureus and Escherichia coli.

References

As of this edit, this article uses content from "The Entomopathogenic Bacterial Endosymbionts Xenorhabdus and Photorhabdus: Convergent Lifestyles from Divergent Genomes", which is licensed in a way that permits reuse under the Creative Commons Attribution-ShareAlike 3.0 Unported License, but not under the GFDL. All relevant terms must be followed.

  1. ^ John M. Chaston; Garret Suen; Sarah L. Tucker; Aaron W. Andersen; Archna Bhasin; Edna Bode; Helge B. Bode; Alexander O. Brachmann; et al. (2011-11-18). "The Entomopathogenic Bacterial Endosymbionts Xenorhabdus and Photorhabdus: Convergent Lifestyles from Divergent Genomes". PLoS ONE. 6 (11): e27909. doi:10.1371/journal.pone.0027909. PMC 3220699. PMID 22125637. Retrieved 2011-11-27.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  2. ^ a b Gaudriault S., Ogier J.C.; Pagès S.; Bisch G.; Chiapello H.; Médigue C.; Rouy Z.; Teyssier C.; Vincent S.; Tailliez P.; Guivaudan A. (2014-07-25). "Attenued Virulence And Genomic Reductive Evolution In The Entomopathogenic Bacterial Symbiont Species, Xenorhabdus poinarii". Genome Biology and Evolution. 6 (6): 1495–1513. doi:10.1093/gbe/evu119. PMC 4079199. PMID 24904010. Retrieved 2014-05-30.
  3. ^ Wolf S.L., Furgani G.; Böszörményi E.; Fodor A.; Máthé-Fodor A.; Forst S.; Hogan J.S.; Katona Z.; Klein M.G.; Stackebrandt E.; Szentirmai A.; Sztaricskai F. (2007-08-25). "Xenorhabdus Antibiotics: a comparative analysis and potential utility for controlling mastisis caused by bacteria". Journal of Applied Microbiology. 104 (2008): 745–758. doi:10.1111/j.1365-2672.2007.03613.x. Retrieved 2007-03-10.

Bibliography

1. Goodrich-Blair H. & Clarke D.J. (2007). Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads for the same destination. Molecular Microbiology (2007) 64(2), 260-268. doi: 10.1111/j.1365-2958.2007.05671.x

2. Sicard M. & Al (2004). When mutualists are pathogens: an experimental study of the symbioses between Steinernema (entomopathogenic nematodes) and Xenorhabdus (bacteria). Genome Biology And Evolution 17(2004)985-993. doi: 10.1111/j.1420-9101.2004.00748.x

3. Pilar F. & Al (2006). Phylogenetic relationships of Bacteria with special reference to endosymbionts and enteric species. The Prokaryotes, pp 41–59.

External links