In the mathematical  field of geometric group theory  that calculates Bestvina measuring formula  (even set of Bestvina and measurement  ), the dimension  of the edge  of a hyperbolic group  from their group cohomology  . It was proven by Mladen Bestvina  and Geoffrey Mess  .
Bestvina and Mess's theorem Let be a hyperbolic group  , then for the  dimension of  its  edge  :
  
    
      
        Γ 
       
     
    {\ displaystyle \ Gamma} 
   
 
  
    
      
        
          ∂ 
          
            ∞ 
           
         
        Γ 
       
     
    {\ displaystyle \ partial _ {\ infty} \ Gamma} 
   
  
  
    
      
        d 
        i 
        m 
        ( 
        
          ∂ 
          
            ∞ 
           
         
        Γ 
        ) 
        = 
        Max 
        
          { 
          
            n 
            : 
            
              H 
              
                n 
               
             
            ( 
            Γ 
            , 
            
              Z 
             
            Γ 
            ) 
            ≠ 
            0 
           
          } 
         
        . 
       
     
    {\ displaystyle dim (\ partial _ {\ infty} \ Gamma) = \ max \ left \ {n \ colon H ^ {n} (\ Gamma, \ mathbb {Z} \ Gamma) \ not = 0 \ right \} .} 
   
 In particular, applies to torsion-free  hyperbolic groups
  
    
      
        d 
        i 
        m 
        ( 
        
          ∂ 
          
            ∞ 
           
         
        Γ 
        ) 
        = 
        c 
        d 
        ( 
        Γ 
        ) 
        , 
       
     
    {\ displaystyle dim (\ partial _ {\ infty} \ Gamma) = cd (\ Gamma),} 
   
 where denotes the cohomological dimension of  the group .
  
    
      
        c 
        d 
        ( 
        Γ 
        ) 
       
     
    {\ displaystyle cd (\ Gamma)} 
   
 
  
    
      
        Γ 
       
     
    {\ displaystyle \ Gamma} 
   
  
Z sets The Bestvina-Mess formula follows from the isomorphism  of - modules  (for any  ring  ) proven by Bestvina and Mess :
  
    
      
        R. 
        Γ 
       
     
    {\ displaystyle R \ Gamma} 
   
 
  
    
      
        R. 
       
     
    {\ displaystyle R} 
   
  
  
    
      
        
          H 
          
            i 
           
         
        ( 
        Γ 
        , 
        R. 
        Γ 
        ) 
        ≅ 
        
          
            
              H 
              ˇ 
             
           
         
        ( 
        ∂ 
        Γ 
        , 
        R. 
        ) 
        , 
       
     
    {\ displaystyle H ^ {i} (\ Gamma, R \ Gamma) \ cong {\ check {H}} (\ partial \ Gamma, R),} 
   
 where the right side denotes the Čech cohomology of  the edge with coefficients  in the ring .
  
    
      
        ∂ 
        Γ 
       
     
    {\ displaystyle \ partial \ Gamma} 
   
 
  
    
      
        R. 
       
     
    {\ displaystyle R} 
   
  
This in turn follows from the following theorem proved by Bestvina and Mess in 1991.
Let be the rep complex of  the hyperbolic group . Then there is an  absolute retract  and a quantity in .
  
    
      
        P 
        ( 
        Γ 
        ) 
       
     
    {\ displaystyle P (\ Gamma)} 
   
 
  
    
      
        Γ 
       
     
    {\ displaystyle \ Gamma} 
   
 
  
    
      
        
          
            
              P 
              ( 
              Γ 
              ) 
             
            ¯ 
           
         
        : = 
        P 
        ( 
        Γ 
        ) 
        ∪ 
        
          ∂ 
          
            ∞ 
           
         
        Γ 
       
     
    {\ displaystyle {\ overline {P (\ Gamma)}}: = P (\ Gamma) \ cup \ partial _ {\ infty} \ Gamma} 
   
 
  
    
      
        
          ∂ 
          
            ∞ 
           
         
        Γ 
       
     
    {\ displaystyle \ partial _ {\ infty} \ Gamma} 
   
 
  
    
      
        
          
            Z 
           
         
       
     
    {\ displaystyle {\ mathcal {Z}}} 
   
 
  
    
      
        
          
            
              P 
              ( 
              Γ 
              ) 
             
            ¯ 
           
         
       
     
    {\ displaystyle {\ overline {P (\ Gamma)}}} 
   
   
The latter means that for every completed subset there is a homotopy with and such that
  
    
      
        A. 
        ⊂ 
        
          ∂ 
          
            ∞ 
           
         
        Γ 
       
     
    {\ displaystyle A \ subset \ partial _ {\ infty} \ Gamma} 
   
 
  
    
      
        H 
        : 
        
          
            
              P 
              ( 
              Γ 
              ) 
             
            ¯ 
           
         
        × 
        
          [ 
          
            0 
            , 
            1 
           
          ] 
         
        → 
        
          
            
              P 
              ( 
              Γ 
              ) 
             
            ¯ 
           
         
       
     
    {\ displaystyle H \ colon {\ overline {P (\ Gamma)}} \ times \ left [0,1 \ right] \ to {\ overline {P (\ Gamma)}}} 
   
 
  
    
      
        
          H 
          
            0 
           
         
        = 
        i 
        d 
       
     
    {\ displaystyle H_ {0} = id} 
   
 
  
    
      
        
          H 
          
            t 
           
         
        
          | 
          
            A. 
           
         
        = 
        i 
        d 
       
     
    {\ displaystyle H_ {t} \ vert _ {A} = id} 
   
 
  
    
      
        
          H 
          
            t 
           
         
        ( 
        
          
            
              P 
              ( 
              Γ 
              ) 
             
            ¯ 
           
         
        ∖ 
        A. 
        ) 
        ⊂ 
        
          
            
              P 
              ( 
              Γ 
              ) 
             
            ¯ 
           
         
        ∖ 
        
          ∂ 
          
            ∞ 
           
         
        Γ 
       
     
    {\ displaystyle H_ {t} ({\ overline {P (\ Gamma)}} \ setminus A) \ subset {\ overline {P (\ Gamma)}} \ setminus \ partial _ {\ infty} \ Gamma} 
   
 applies to all .
  
    
      
        t 
        > 
        0 
       
     
    {\ displaystyle t> 0} 
   
 
Applications Bestvina and Mess use their formula to prove the following theorem about the local topology of the boundary:
Be a hyperbolic group. There is a ring and a ring for which is finitely generated  and not zero. When  connected  , then it is  locally connected  .
  
    
      
        Γ 
       
     
    {\ displaystyle \ Gamma} 
   
 
  
    
      
        R. 
       
     
    {\ displaystyle R} 
   
 
  
    
      
        i 
        > 
        0 
       
     
    {\ displaystyle i> 0} 
   
 
  
    
      
        
          H 
          
            i 
           
         
        ( 
        Γ 
        , 
        R. 
        Γ 
        ) 
       
     
    {\ displaystyle H ^ {i} (\ Gamma, R \ Gamma)} 
   
 
  
    
      
        
          ∂ 
          
            ∞ 
           
         
        Γ 
       
     
    {\ displaystyle \ partial _ {\ infty} \ Gamma} 
   
   
For the fundamental groups of   closed  ,  irreducible  3-manifolds  , they prove that  homeomorphic  to the  2-sphere  and the  universal superposition  is homeomorphic to , and homeomorphic to the closed 3-sphere .
  
    
      
        Γ 
        = 
        
          π 
          
            1 
           
         
        M. 
       
     
    {\ displaystyle \ Gamma = \ pi _ {1} M} 
   
 
  
    
      
        M. 
       
     
    {\ displaystyle M} 
   
 
  
    
      
        
          ∂ 
          
            ∞ 
           
         
        Γ 
       
     
    {\ displaystyle \ partial _ {\ infty} \ Gamma} 
   
 
  
    
      
        
          
            
              M. 
              ~ 
             
           
         
       
     
    {\ displaystyle {\ widetilde {M}}} 
   
 
  
    
      
        
          
            R. 
           
          
            3 
           
         
       
     
    {\ displaystyle \ mathbb {R} ^ {3}} 
   
 
  
    
      
        
          
            
              M. 
              ~ 
             
           
         
        ∪ 
        
          ∂ 
          
            ∞ 
           
         
        Γ 
       
     
    {\ displaystyle {\ widetilde {M}} \ cup \ partial _ {\ infty} \ Gamma} 
   
 
  
    
      
        
          B. 
          
            3 
           
         
       
     
    {\ displaystyle B ^ {3}} 
   
  
In higher dimensions , the analogous proposition applies that for a torsion-free, hyperbolic group , which is the fundamental group of a closed, aspherical  -manifold with and , the boundary must be homeomorphic .
  
    
      
        n 
        ≥ 
        6th 
       
     
    {\ displaystyle n \ geq 6} 
   
 
  
    
      
        Γ 
       
     
    {\ displaystyle \ Gamma} 
   
 
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
 
  
    
      
        M. 
       
     
    {\ displaystyle M} 
   
 
  
    
      
        
          
            
              M. 
              ~ 
             
           
         
        ≅ 
        
          
            R. 
           
          
            n 
           
         
       
     
    {\ displaystyle {\ widetilde {M}} \ cong \ mathbb {R} ^ {n}} 
   
 
  
    
      
        
          
            
              M. 
              ~ 
             
           
         
        ∪ 
        
          ∂ 
          
            ∞ 
           
         
        Γ 
        ≅ 
        
          B. 
          
            n 
           
         
       
     
    {\ displaystyle {\ widetilde {M}} \ cup \ partial _ {\ infty} \ Gamma \ cong B ^ {n}} 
   
 
  
    
      
        
          S. 
          
            n 
            - 
            1 
           
         
       
     
    {\ displaystyle S ^ {n-1}} 
   
  
literature M. Bestvina, G. Mess: The boundary of negatively curved groups  . J. Amer. Math. Soc. 4: 469-481 (1991). Individual evidence 
↑  A. Bartels, W. Lück, S. Weinberger: On hyperbolic groups with spheres as boundary  . J. Diff. Geom. 86, 1-16 (2010). 
 
 
 
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">