Values of the Carmichael function 
λ  (black) and the Euler 
φ  function (red) for the first 356 numbers. The point ( 
n  ,  
λ (n)  ) is two-colored if 
λ (n)  = 
φ (n) 
 
 The Carmichael function  from the field  of mathematics  is a number theoretic function  that determines the smallest of every natural number n  , so that:
  
    
      
        m 
        =: 
        λ 
        ( 
        n 
        ) 
       
     
    {\ displaystyle m =: \ lambda (n)} 
   
 
  
    
      
        
          G 
          
            m 
           
         
        ≡ 
        1 
        
          mod 
          
            n 
           
         
       
     
    {\ displaystyle g ^ {m} \ equiv 1 {\ bmod {n}}} 
   
 each holds, the prime  to be. In  group-theoretic  way of speaking is the  torsion group  of the  (prime) residue class group  .
  
    
      
        G 
       
     
    {\ displaystyle g} 
   
 
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
 
  
    
      
        λ 
        ( 
        n 
        ) 
       
     
    {\ displaystyle \ lambda (n)} 
   
 
  
    
      
        ( 
        
          Z 
         
        
          / 
         
        n 
        
          Z 
         
        
          ) 
          
            × 
           
         
       
     
    {\ displaystyle (\ mathbb {Z} / n \ mathbb {Z}) ^ {\ times}} 
   
  
The Carmichael function goes back to the mathematician Robert Daniel Carmichael  . It is the maximum period length of the fraction in its -adic  representations  and plays a role in  prime numbers  and  Fermat's pseudoprime  numbers  .
  
    
      
        1 
        
          / 
         
        n 
       
     
    {\ displaystyle 1 / n} 
   
 
  
    
      
        G 
       
     
    {\ displaystyle g} 
   
  
calculation The Carmichael function can be calculated according to the following scheme:
  
    
      
        
          
            
              
                λ 
                ( 
                1 
                ) 
               
              
                = 
                1 
               
             
            
              
                λ 
                ( 
                2 
                ) 
               
              
                = 
                1 
               
             
            
              
                λ 
                ( 
                4th 
                ) 
               
              
                = 
                2 
               
             
            
              
                λ 
                ( 
                
                  2 
                  
                    k 
                   
                 
                ) 
               
              
                = 
                
                  2 
                  
                    k 
                    - 
                    2 
                   
                 
                
                  f 
                  
                    
                      
                        u 
                        ¨ 
                       
                     
                   
                  r 
                 
                  
                k 
                > 
                2 
               
             
            
              
                λ 
                ( 
                
                  p 
                  
                    k 
                   
                 
                ) 
               
              
                = 
                
                  p 
                  
                    k 
                    - 
                    1 
                   
                 
                ⋅ 
                ( 
                p 
                - 
                1 
                ) 
                
                  f 
                  
                    
                      
                        u 
                        ¨ 
                       
                     
                   
                  r 
                 
                  
                p 
                ≥ 
                3 
                  
                
                  p 
                  r 
                  i 
                  m 
                 
                , 
                k 
                > 
                0 
               
             
            
              
                λ 
                ( 
                
                  p 
                  
                    1 
                   
                  
                    
                      k 
                      
                        1 
                       
                     
                   
                 
                
                  p 
                  
                    2 
                   
                  
                    
                      k 
                      
                        2 
                       
                     
                   
                 
                ⋅ 
                ⋅ 
                ⋅ 
                
                  p 
                  
                    s 
                   
                  
                    
                      k 
                      
                        s 
                       
                     
                   
                 
                ) 
               
              
                = 
                LCM 
                 
                
                  
                    ( 
                   
                 
                λ 
                ( 
                
                  p 
                  
                    1 
                   
                  
                    
                      k 
                      
                        1 
                       
                     
                   
                 
                ) 
                , 
                λ 
                ( 
                
                  p 
                  
                    2 
                   
                  
                    
                      k 
                      
                        2 
                       
                     
                   
                 
                ) 
                , 
                . 
                . 
                . 
                , 
                λ 
                ( 
                
                  p 
                  
                    s 
                   
                  
                    
                      k 
                      
                        s 
                       
                     
                   
                 
                ) 
                
                  
                    ) 
                   
                 
               
             
           
         
       
     
    {\ displaystyle {\ begin {aligned} \ lambda (1) & = 1 \\\ lambda (2) & = 1 \\\ lambda (4) & = 2 \\ lambda (2 ^ {k}) & = 2 ^ {k-2} \ quad \ mathrm {f {\ ddot {u}} r} \ k> 2 \\\ lambda (p ^ {k}) & = p ^ {k-1} \ cdot (p -1) \ quad \ mathrm {f {\ ddot {u}} r} \ p \ geq 3 \ \ mathrm {prim}, k> 0 \\\ lambda (p_ {1} ^ {k_ {1}} p_ {2} ^ {k_ {2}} \ cdot \ cdot \ cdot p_ {s} ^ {k_ {s}}) & = \ operatorname {kgV} {\ bigl (} \ lambda (p_ {1} ^ {k_ {1}}), \ lambda (p_ {2} ^ {k_ {2}}), ..., \ lambda (p_ {s} ^ {k_ {s}}) {\ bigr)} \ end {aligned }}} 
   
 The stand for pairwise different prime numbers and those for positive whole numbers.
  
    
      
        
          p 
          
            i 
           
         
       
     
    {\ displaystyle p_ {i}} 
   
 
  
    
      
        
          k 
          
            i 
           
         
       
     
    {\ displaystyle k_ {i}} 
   
 
The following formula comes to the same result:
Let be the prime factorization  of (with , if even):
  
    
      
        m 
        = 
        
          p 
          
            1 
           
          
            
              k 
              
                1 
               
             
           
         
        
          p 
          
            2 
           
          
            
              k 
              
                2 
               
             
           
         
        ⋅ 
        ⋅ 
        ⋅ 
        
          p 
          
            s 
           
          
            
              k 
              
                s 
               
             
           
         
       
     
    {\ displaystyle m = p_ {1} ^ {k_ {1}} p_ {2} ^ {k_ {2}} \ cdot \ cdot \ cdot p_ {s} ^ {k_ {s}}} 
   
 
  
    
      
        m 
        ∈ 
        
          N 
         
       
     
    {\ displaystyle m \ in \ mathbb {N}} 
   
 
  
    
      
        
          p 
          
            1 
           
         
        = 
        2 
       
     
    {\ displaystyle p_ {1} = 2} 
   
 
  
    
      
        m 
       
     
    {\ displaystyle m} 
   
  
  
    
      
        λ 
        ( 
        m 
        ) 
        = 
        LCM 
         
        
          
            ( 
           
         
        φ 
        ( 
        
          p 
          
            1 
           
          
            
              k 
              
                1 
               
             
           
         
        ) 
        , 
        φ 
        ( 
        
          p 
          
            2 
           
          
            
              k 
              
                2 
               
             
           
         
        ) 
        , 
        . 
        . 
        . 
        , 
        φ 
        ( 
        
          p 
          
            s 
           
          
            
              k 
              
                s 
               
             
           
         
        ) 
        
          
            ) 
           
         
       
     
    {\ displaystyle \ lambda (m) = \ operatorname {kgV} {\ bigl (} \ varphi (p_ {1} ^ {k_ {1}}), \ varphi (p_ {2} ^ {k_ {2}}) , ..., \ varphi (p_ {s} ^ {k_ {s}}) {\ bigr)}} 
   
 
  
    
      
        m 
        ≢ 
        0 
        
          mod 
          
            8th 
           
         
       
     
    {\ displaystyle m \ not \ equiv 0 {\ bmod {8}}} 
   
  
  
    
      
        λ 
        ( 
        m 
        ) 
        = 
        LCM 
         
        
          
            ( 
           
         
        φ 
        ( 
        
          p 
          
            1 
           
          
            
              k 
              
                1 
               
             
           
         
        ) 
        
          / 
         
        2 
        , 
        φ 
        ( 
        
          p 
          
            2 
           
          
            
              k 
              
                2 
               
             
           
         
        ) 
        , 
        . 
        . 
        . 
        , 
        φ 
        ( 
        
          p 
          
            s 
           
          
            
              k 
              
                s 
               
             
           
         
        ) 
        
          
            ) 
           
         
       
     
    {\ displaystyle \ lambda (m) = \ operatorname {kgV} {\ bigl (} \ varphi (p_ {1} ^ {k_ {1}}) / 2, \ varphi (p_ {2} ^ {k_ {2} }), ..., \ varphi (p_ {s} ^ {k_ {s}}) {\ bigr)}} 
   
 
  
    
      
        m 
        ≡ 
        0 
        
          mod 
          
            8th 
           
         
       
     
    {\ displaystyle m \ equiv 0 {\ bmod {8}}} 
   
  
 
Here called the Euler's φ function  . The following applies to powers of odd prime numbers
  
    
      
        φ 
        ( 
        x 
        ) 
       
     
    {\ displaystyle \ varphi (x)} 
   
 
  
    
      
        p 
       
     
    {\ displaystyle p} 
   
 
  
    
      
        λ 
        ( 
        
          p 
          
            k 
           
         
        ) 
        = 
        φ 
        ( 
        
          p 
          
            k 
           
         
        ) 
       
     
    {\ displaystyle \ lambda (p ^ {k}) = \ varphi (p ^ {k})} 
   
  
example 
  
    
      
        λ 
        ( 
        15th 
        ) 
        = 
        λ 
        ( 
        3 
        ⋅ 
        5 
        ) 
        = 
        LCM 
         
        
          
            ( 
           
         
        φ 
        ( 
        3 
        ) 
        , 
        φ 
        ( 
        5 
        ) 
        
          
            ) 
           
         
        = 
        LCM 
         
        
          
            ( 
           
         
        2 
        , 
        4th 
        
          
            ) 
           
         
        = 
        4th 
       
     
    {\ displaystyle \ lambda (15) = \ lambda (3 \ cdot 5) = \ operatorname {kgV} {\ bigl (} \ varphi (3), \ varphi (5) {\ bigr)} = \ operatorname {kgV} {\ bigl (} 2,4 {\ bigr)} = 4} 
   
 
  
    
      
        
          G 
          
            4th 
           
         
        ≡ 
        1 
        
          mod 
          
            1 
           
         
        5 
       
     
    {\ displaystyle g ^ {4} \ equiv 1 {\ bmod {1}} 5} 
   
 
  
    
      
        G 
       
     
    {\ displaystyle g} 
   
  
The Carmichael function and Euler's φ function 
 
For the numbers one, two, four, for every odd prime power and for all doubles of odd prime powers, the Carmichael function and Euler's φ function are  identical. If and only then do primitive  roots also exist modulo . In general, both functions are different; is always a factor of .
  
    
      
        λ 
        ( 
        n 
        ) 
        = 
        φ 
        ( 
        n 
        ) 
       
     
    {\ displaystyle \ lambda (n) = \ varphi (n)} 
   
 
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
 
  
    
      
        λ 
        ( 
        n 
        ) 
       
     
    {\ displaystyle \ lambda (n)} 
   
 
  
    
      
        φ 
        ( 
        n 
        ) 
       
     
    {\ displaystyle \ varphi (n)} 
   
  
Euler's φ function:
  
    
      
        φ 
        ( 
        105 
        ) 
        = 
        φ 
        ( 
        3 
        ⋅ 
        5 
        ⋅ 
        7th 
        ) 
        = 
        φ 
        ( 
        3 
        ) 
        ⋅ 
        φ 
        ( 
        5 
        ) 
        ⋅ 
        φ 
        ( 
        7th 
        ) 
        = 
        2 
        ⋅ 
        4th 
        ⋅ 
        6th 
        = 
        48 
       
     
    {\ displaystyle \ varphi (105) = \ varphi (3 \ cdot 5 \ cdot 7) = \ varphi (3) \ cdot \ varphi (5) \ cdot \ varphi (7) = 2 \ cdot 4 \ cdot 6 = 48 } 
   
  
Carmichael function:
  
    
      
        λ 
        ( 
        105 
        ) 
        = 
        λ 
        ( 
        3 
        ⋅ 
        5 
        ⋅ 
        7th 
        ) 
        = 
        LCM 
         
        
          
            ( 
           
         
        φ 
        ( 
        3 
        ) 
        , 
        φ 
        ( 
        5 
        ) 
        , 
        φ 
        ( 
        7th 
        ) 
        
          
            ) 
           
         
        = 
        LCM 
         
        
          
            ( 
           
         
        2 
        , 
        4th 
        , 
        6th 
        
          
            ) 
           
         
        = 
        12 
       
     
    {\ displaystyle \ lambda (105) = \ lambda (3 \ cdot 5 \ cdot 7) = \ operatorname {kgV} {\ bigl (} \ varphi (3), \ varphi (5), \ varphi (7) {\ bigr)} = \ operatorname {kgV} {\ bigl (} 2,4,6 {\ bigr)} = 12} 
   
  
 
The Carmichael Function and the Carmichael Number Since the Carmichael function determines the smallest for every natural number , so that for everything that is relatively prime and the difference is divisible by for every Carmichael number  , it follows from:
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
 
  
    
      
        m 
        = 
        λ 
        ( 
        n 
        ) 
       
     
    {\ displaystyle m = \ lambda (n)} 
   
 
  
    
      
        
          G 
          
            m 
           
         
        ≡ 
        1 
        
          mod 
          
            n 
           
         
       
     
    {\ displaystyle g ^ {m} \ equiv 1 {\ bmod {n}}} 
   
 
  
    
      
        G 
          
       
     
    {\ displaystyle g \} 
   
 
  
    
      
        n 
          
       
     
    {\ displaystyle n \} 
   
 
  
    
      
        c 
       
     
    {\ displaystyle c} 
   
 
  
    
      
        c 
        - 
        1 
          
       
     
    {\ displaystyle c-1 \} 
   
 
  
    
      
        λ 
        ( 
        c 
        ) 
       
     
    {\ displaystyle \ lambda (c)} 
   
  
  
    
      
        
          G 
          
            λ 
            ( 
            c 
            ) 
           
         
        ≡ 
        1 
        
          mod 
          
            c 
           
         
       
     
    {\ displaystyle g ^ {\ lambda (c)} \ equiv 1 {\ bmod {c}}} 
   
 also
  
    
      
        
          G 
          
            c 
            - 
            1 
           
         
        ≡ 
        1 
        
          mod 
          
            c 
           
         
       
     
    {\ displaystyle g ^ {c-1} \ equiv 1 {\ bmod {c}}} 
   
  For a Carmichael number , the number is
  
    
      
        c 
       
     
    {\ displaystyle c} 
   
 
  
    
      
        d 
        : = 
        
          
            
              
                c 
                - 
                1 
               
              
                λ 
                ( 
                c 
                ) 
               
             
           
         
       
     
    {\ displaystyle d: = {\ tfrac {c-1} {\ lambda (c)}}} 
   
 so completely, and it applies to all to be coprime
  
    
      
        c 
       
     
    {\ displaystyle c} 
   
 
  
    
      
        G 
       
     
    {\ displaystyle g} 
   
 
  
    
      
        
          G 
          
            c 
            - 
            1 
           
         
        = 
        
          G 
          
            λ 
            ( 
            c 
            ) 
            ⋅ 
            d 
           
         
        ≡ 
        1 
        
          mod 
          
            c 
           
         
       
     
    {\ displaystyle g ^ {c-1} = g ^ {\ lambda (c) \ cdot d} \ equiv 1 {\ bmod {c}}} 
   
  See also Web links  
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">