The Chapman-Robbins inequality is a mathematical statement in estimation theory , a branch of mathematical statistics . For an unbiased estimator, it provides a lower bound for the variance of the estimator and thus also an estimate of its quality. With additional regularity requirements, the Chapman-Robbins inequality also provides a point-wise version of the Cramér-Rao inequality .
The inequality is named after Douglas George Chapman and Herbert Robbins .
formulation
Framework
A statistical model is given . Be strong and be of dominating , that is all there is a density function
(
X
,
A.
,
(
P
ϑ
)
ϑ
∈
Θ
)
{\ displaystyle (X, {\ mathcal {A}}, (P _ {\ vartheta}) _ {\ vartheta \ in \ Theta})}
ϑ
0
∈
Θ
{\ displaystyle \ vartheta _ {0} \ in \ Theta}
(
P
ϑ
)
ϑ
∈
Θ
{\ displaystyle (P _ {\ vartheta}) _ {\ vartheta \ in \ Theta}}
P
ϑ
0
{\ displaystyle P _ {\ vartheta _ {0}}}
ϑ
∈
Θ
{\ displaystyle \ vartheta \ in \ Theta}
f
ϑ
: =
d
P
ϑ
d
P
ϑ
0
{\ displaystyle f _ {\ vartheta}: = {\ frac {\ mathrm {d} P _ {\ vartheta}} {\ mathrm {d} P _ {\ vartheta _ {0}}}}}
from regarding .
P
ϑ
{\ displaystyle P _ {\ vartheta}}
P
ϑ
0
{\ displaystyle P _ {\ vartheta _ {0}}}
Furthermore, let the set of all square-integrable functions (see Lp-space ) and the set of all unbiased estimators for the parameter function .
L.
2
(
P
ϑ
0
)
: =
L.
2
(
X
,
A.
,
P
ϑ
0
)
{\ displaystyle L ^ {2} (P _ {\ vartheta _ {0}}): = L ^ {2} (X, {\ mathcal {A}}, P _ {\ vartheta _ {0}})}
P
ϑ
0
{\ displaystyle P _ {\ vartheta _ {0}}}
D.
G
{\ displaystyle D_ {g}}
G
{\ displaystyle g}
Then
D.
G
(
ϑ
0
)
: =
D.
G
∩
L.
2
(
P
ϑ
0
)
{\ displaystyle D_ {g} (\ vartheta _ {0}): = D_ {g} \ cap L ^ {2} (P _ {\ vartheta _ {0}})}
the set of all unbiased estimators for with finite variance with respect to and
G
{\ displaystyle g}
P
ϑ
0
{\ displaystyle P _ {\ vartheta _ {0}}}
F.
ϑ
0
: =
{
f
ϑ
|
f
ϑ
∈
L.
2
(
P
ϑ
0
)
}
{\ displaystyle {\ mathcal {F}} _ {\ vartheta _ {0}}: = \ {f _ {\ vartheta} \, | \, f _ {\ vartheta} \ in L ^ {2} (P _ {\ vartheta _ {0}}) \}}
the set of all density functions with finite variance with respect to .
P
ϑ
0
{\ displaystyle P _ {\ vartheta _ {0}}}
statement
It applies to everyone :
T
∈
D.
G
(
ϑ
0
)
{\ displaystyle T \ in D_ {g} (\ vartheta _ {0})}
Var
ϑ
0
(
T
)
≥
sup
f
ϑ
∈
F.
ϑ
0
(
G
(
ϑ
)
-
G
(
ϑ
0
)
)
2
Var
ϑ
0
(
f
ϑ
)
{\ displaystyle \ operatorname {Var} _ {\ vartheta _ {0}} (T) \ geq \ sup _ {f _ {\ vartheta} \ in {\ mathcal {F}} _ {\ vartheta _ {0}}} {\ frac {\ left (g (\ vartheta) -g (\ vartheta _ {0}) \ right) ^ {2}} {\ operatorname {Var} _ {\ vartheta _ {0}} (f _ {\ vartheta })}}}
Transition to the Cramér-Rao inequality
The Chapman-Robbins inequality yields a pointwise version of the Cramér-Rao inequality under the following conditions :
The derivation in exists for all of them .
x
∈
X
{\ displaystyle x \ in X}
∂
∂
ϑ
f
ϑ
(
x
)
{\ displaystyle {\ frac {\ partial} {\ partial \ vartheta}} f _ {\ vartheta} (x)}
ϑ
0
{\ displaystyle \ vartheta _ {0}}
The quotient converges for in versus .
f
ϑ
-
1
ϑ
-
ϑ
0
{\ displaystyle {\ frac {f _ {\ vartheta} -1} {\ vartheta - \ vartheta _ {0}}}}
ϑ
→
ϑ
0
{\ displaystyle \ vartheta \ to \ vartheta _ {0}}
L.
2
(
P
ϑ
0
)
{\ displaystyle L ^ {2} (P _ {\ vartheta _ {0}})}
∂
∂
ϑ
f
ϑ
|
ϑ
=
ϑ
0
{\ displaystyle {\ frac {\ partial} {\ partial \ vartheta}} f _ {\ vartheta} | _ {\ vartheta = \ vartheta _ {0}}}
The parameter function is differentiable in.
G
:
Θ
→
R.
{\ displaystyle g \ colon \ Theta \ rightarrow \ mathbb {R}}
ϑ
0
{\ displaystyle \ vartheta _ {0}}
It follows from these assumptions
lim
ϑ
→
ϑ
0
G
(
ϑ
)
-
G
(
ϑ
0
)
ϑ
-
ϑ
0
=
G
′
(
ϑ
0
)
{\ displaystyle \ lim _ {\ vartheta \ to \ vartheta _ {0}} {\ frac {g (\ vartheta) -g (\ vartheta _ {0})} {\ vartheta - \ vartheta _ {0}}} = g '(\ vartheta _ {0})}
such as
lim
ϑ
→
ϑ
0
Var
ϑ
0
(
f
ϑ
)
(
ϑ
-
ϑ
0
)
2
=
I.
(
ϑ
0
)
{\ displaystyle \ lim _ {\ vartheta \ to \ vartheta _ {0}} {\ frac {\ operatorname {Var} _ {\ vartheta _ {0}} (f _ {\ vartheta})} {(\ vartheta - \ vartheta _ {0}) ^ {2}}} = I (\ vartheta _ {0})}
,
where the Fisher information is in the point .
I.
(
ϑ
0
)
{\ displaystyle I (\ vartheta _ {0})}
ϑ
0
{\ displaystyle \ vartheta _ {0}}
From the Chapman-Robbins inequality it follows that
Var
ϑ
0
(
T
)
≥
(
G
′
(
ϑ
0
)
)
2
I.
(
ϑ
0
)
{\ displaystyle \ operatorname {Var} _ {\ vartheta _ {0}} (T) \ geq {\ frac {(g '(\ vartheta _ {0})) ^ {2}} {I (\ vartheta _ { 0})}}}
,
the Cramér-Rao inequality in the point .
ϑ
0
{\ displaystyle \ vartheta _ {0}}
literature
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">