The main space is a term from linear algebra and a generalization of the eigenspace . Main rooms play a major role in setting up the Jordanian normal form and calculating an associated basis.
Definition of the main room
If a linear mapping from a finite-dimensional vector space in itself is an eigenvalue of and denotes the algebraic multiplicity of the eigenvalue , then one calls the kernel of the -fold execution of main space to the eigenvalue , i.e. H.
F.
:
V
→
V
{\ displaystyle F \ colon V \ to V}
V
{\ displaystyle V}
λ
{\ displaystyle \ lambda}
F.
{\ displaystyle F}
r
{\ displaystyle r}
λ
{\ displaystyle \ lambda}
r
{\ displaystyle r}
(
F.
-
λ
i
d
)
{\ displaystyle (F- \ lambda \, \ mathrm {id})}
λ
{\ displaystyle \ lambda}
Blow
(
F.
,
λ
)
: =
{
v
∈
V
∣
(
F.
-
λ
i
d
)
r
(
v
)
=
0
for a
r
∈
N
}
{\ displaystyle \ operatorname {Hau} (F, \ lambda): = \ {v \ in V \ mid (F- \ lambda \, \ mathrm {id}) ^ {r} (v) = 0 {\ text { for a}} r \ in \ mathbb {N} \}}
.
Here is the identity mapping on . The main space is thus spanned by precisely those vectors for which applies. In particular, the eigenspace for an eigenvalue is a subspace of the main space for this eigenvalue.
i
d
{\ displaystyle \ mathrm {id}}
V
{\ displaystyle V}
v
{\ displaystyle v}
(
F.
-
λ
i
d
)
r
(
v
)
=
0
{\ displaystyle (F- \ lambda \, \ mathrm {id}) ^ {r} (v) = 0}
Main vector
The elements of the main space are also sometimes called main vectors . A level or a level can be assigned to these main vectors. Let be an endomorphism and an eigenvalue of the endomorphism. A vector is called the main vector of the stage if
F.
{\ displaystyle F}
λ
{\ displaystyle \ lambda}
v
{\ displaystyle v}
p
{\ displaystyle p}
(
F.
-
λ
i
d
)
p
(
v
)
=
0
{\ displaystyle (F- \ lambda \, \ mathrm {id}) ^ {p} (v) = 0}
but
(
F.
-
λ
i
d
)
p
-
1
(
v
)
≠
0
{\ displaystyle (F- \ lambda \, \ mathrm {id}) ^ {p-1} (v) \ neq 0}
applies. All eigenvectors are thus main vectors of level 1.
Theorem about main space decomposition
Let it be an endomorphism and its characteristic polynomial
F.
{\ displaystyle F}
χ
F.
(
t
)
=
±
∏
j
=
1
k
(
t
-
λ
j
)
r
j
{\ displaystyle \ chi _ {F} (t) = \ pm \ prod _ {j = 1} ^ {k} (t- \ lambda _ {j}) ^ {r_ {j}}}
decay completely into linear factors with different pairs . Then:
λ
1
...
λ
k
∈
K
{\ displaystyle \ lambda _ {1} \ ldots \ lambda _ {k} \ in K}
The main room is -invariant, that is .
F.
{\ displaystyle F}
F.
(
Blow
(
F.
,
λ
i
)
)
⊂
Blow
(
F.
,
λ
i
)
{\ displaystyle F \ left (\ operatorname {Hau} (F, \ lambda _ {i}) \ right) \ subset \ operatorname {Hau} (F, \ lambda _ {i})}
The dimensions of the main rooms are consistent with the multiplicities of the zeros of the characteristic polynomial match, so .
dim
(
Blow
(
F.
,
λ
i
)
)
=
r
i
{\ displaystyle \ dim \ left (\ operatorname {Hau} (F, \ lambda _ {i}) \ right) = r_ {i}}
The main spaces form a direct decomposition ( inner direct sum ) of . So it applies .
V
{\ displaystyle V}
V
=
Blow
(
F.
,
λ
1
)
⊕
⋯
⊕
Blow
(
F.
,
λ
k
)
{\ displaystyle V = \ operatorname {Hau} (F, \ lambda _ {1}) \ oplus \ cdots \ oplus \ operatorname {Hau} (F, \ lambda _ {k})}
The endomorphism has a decomposition . In it is diagonalizable , is nilpotent , and it is true .
F.
{\ displaystyle F}
F.
=
F.
D.
+
F.
N
{\ displaystyle F = F_ {D} + F_ {N}}
F.
D.
{\ displaystyle F_ {D}}
F.
N
{\ displaystyle F_ {N}}
F.
D.
∘
F.
N
=
F.
N
∘
F.
D.
{\ displaystyle F_ {D} \ circ F_ {N} = F_ {N} \ circ F_ {D}}
example
Given a matrix whose characteristic polynomial breaks down into linear factors:
A.
∈
R.
6th
×
6th
{\ displaystyle A \ in \ mathbb {R} ^ {6 \ times 6}}
det
(
A.
-
λ
I.
)
=
(
λ
-
2
)
3
(
λ
-
4th
)
3
{\ displaystyle \ det \ left (A- \ lambda I \ right) = (\ lambda -2) ^ {3} (\ lambda -4) ^ {3}}
.
In addition, the following should apply:
dim
Ker
(
A.
-
2
I.
)
=
2
,
dim
Ker
(
A.
-
2
I.
)
2
=
3
,
dim
Ker
(
A.
-
2
I.
)
3
=
3
dim
Ker
(
A.
-
4th
I.
)
=
1
,
dim
Ker
(
A.
-
4th
I.
)
2
=
2
,
dim
Ker
(
A.
-
4th
I.
)
3
=
3
{\ displaystyle {\ begin {aligned} \ dim \ operatorname {Ker} \ left (A-2I \ right) & = 2 \ ,, \ quad \ dim \ operatorname {Ker} \ left (A-2I \ right) ^ {2} = 3 \ ,, \ quad \ dim \ operatorname {Ker} \ left (A-2I \ right) ^ {3} = 3 \\\ dim \ operatorname {Ker} \ left (A-4I \ right) & = 1 \ ,, \ quad \ dim \ operatorname {Ker} \ left (A-4I \ right) ^ {2} = 2 \ ,, \ quad \ dim \ operatorname {Ker} \ left (A-4I \ right ) ^ {3} = 3 \\\ end {aligned}}}
The algebraic multiplicity of the eigenvalue 2 is 3 and that of the eigenvalue 4 is 3. The eigenspaces have the dimension 2 or 1, ie smaller than the respective algebraic multiplicity, which is why the matrix cannot be diagonalized. But the Jordan normal form can be constructed
J
{\ displaystyle J}
J
=
[
2
0
0
0
0
0
0
2
1
0
0
0
0
0
2
0
0
0
0
0
0
4th
1
0
0
0
0
0
4th
1
0
0
0
0
0
4th
]
{\ displaystyle J = {\ begin {bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 & 1 & 0 \\ 0 & 0 & 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 0 & 0 & 4} \ end} {bmatrix
via a similarity transformation with the transformation matrix
P
{\ displaystyle P}
P
-
1
A.
P
=
J
⟺
A.
P
=
P
J
{\ displaystyle P ^ {- 1} AP = J \ quad \ Longleftrightarrow \ quad AP = PJ}
,
where the column vectors of the main vectors correspond to:
P
{\ displaystyle P}
p
i
{\ displaystyle p_ {i}}
P
=
[
p
1
p
2
p
3
p
4th
p
5
p
6th
]
{\ displaystyle P = {\ begin {bmatrix} p_ {1} & p_ {2} & p_ {3} & p_ {4} & p_ {5} & p_ {6} \ end {bmatrix}}}
The transformation reads with the help of the main vectors:
A.
P
=
P
J
{\ displaystyle AP = PJ}
A.
[
p
1
p
2
p
3
p
4th
p
5
p
6th
]
=
[
p
1
p
2
p
3
p
4th
p
5
p
6th
]
J
=
[
2
p
1
2
p
2
2
p
3
+
p
2
4th
p
4th
4th
p
5
+
p
4th
4th
p
6th
+
p
5
]
{\ displaystyle A {\ begin {bmatrix} p_ {1} & p_ {2} & p_ {3} & p_ {4} & p_ {5} & p_ {6} \ end {bmatrix}} = {\ begin {bmatrix} p_ {1 } & p_ {2} & p_ {3} & p_ {4} & p_ {5} & p_ {6} \ end {bmatrix}} J = {\ begin {bmatrix} 2p_ {1} & 2p_ {2} & 2p_ {3} + p_ { 2} & 4p_ {4} & 4p_ {5} + p_ {4} & 4p_ {6} + p_ {5} \ end {bmatrix}}}
So it follows:
(
A.
-
2
I.
)
p
1
=
0
(
A.
-
2
I.
)
p
2
=
0
(
A.
-
2
I.
)
p
3
=
p
2
⇒
(
A.
-
2
I.
)
2
p
3
=
(
A.
-
2
I.
)
p
2
=
0
(
A.
-
4th
I.
)
p
4th
=
0
(
A.
-
4th
I.
)
p
5
=
p
4th
⇒
(
A.
-
4th
I.
)
2
p
5
=
(
A.
-
4th
I.
)
p
4th
=
0
(
A.
-
4th
I.
)
p
6th
=
p
5
⇒
(
A.
-
4th
I.
)
3
p
6th
=
(
A.
-
4th
I.
)
2
p
5
=
(
A.
-
4th
I.
)
p
4th
=
0
{\ displaystyle {\ begin {aligned} \ left (A-2I \ right) p_ {1} & = 0 \\\ left (A-2I \ right) p_ {2} & = 0 \\\ left (A- 2I \ right) p_ {3} & = p_ {2} \ quad \ Rightarrow \ quad \ left (A-2I \ right) ^ {2} p_ {3} = \ left (A-2I \ right) p_ {2 } = 0 \\\ left (A-4I \ right) p_ {4} & = 0 \\\ left (A-4I \ right) p_ {5} & = p_ {4} \ quad \ Rightarrow \ quad \ left (A-4I \ right) ^ {2} p_ {5} = \ left (A-4I \ right) p_ {4} = 0 \\\ left (A-4I \ right) p_ {6} & = p_ { 5} \ quad \ Rightarrow \ quad \ left (A-4I \ right) ^ {3} p_ {6} = \ left (A-4I \ right) ^ {2} p_ {5} = \ left (A-4I \ right) p_ {4} = 0 \ end {aligned}}}
p
1
{\ displaystyle p_ {1}}
, and are main vectors of the first order (i.e. eigenvectors), and main vectors of the second order and is a main vector of the third order.
p
2
{\ displaystyle p_ {2}}
p
4th
{\ displaystyle p_ {4}}
p
3
{\ displaystyle p_ {3}}
p
5
{\ displaystyle p_ {5}}
p
6th
{\ displaystyle p_ {6}}
The cores of the mappings are spanned by the main vectors as follows:
A.
-
λ
E.
{\ displaystyle A- \ lambda E}
Ker
(
A.
-
2
I.
)
=
⟨
p
1
,
p
2
⟩
,
Ker
(
A.
-
2
I.
)
n
=
⟨
p
1
,
p
2
,
p
3
⟩
With
n
≥
2
,
Ker
(
A.
-
4th
I.
)
=
⟨
p
4th
⟩
,
Ker
(
A.
-
4th
I.
)
2
=
⟨
p
4th
,
p
5
⟩
,
Ker
(
A.
-
4th
I.
)
n
=
⟨
p
4th
,
p
5
,
p
6th
⟩
With
n
≥
3
{\ displaystyle {\ begin {aligned} \ operatorname {Ker} \ left (A-2I \ right) & = \ left \ langle p_ {1}, p_ {2} \ right \ rangle \ ,, \ quad \ operatorname { Ker} \ left (A-2I \ right) ^ {n} = \ left \ langle p_ {1}, p_ {2}, p_ {3} \ right \ rangle \ {\ text {with}} \ n \ geq 2 \ ,, \\\ operatorname {Ker} \ left (A-4I \ right) & = \ left \ langle p_ {4} \ right \ rangle \ ,, \ quad \ operatorname {Ker} \ left (A-4I \ right) ^ {2} = \ left \ langle p_ {4}, p_ {5} \ right \ rangle \ ,, \ quad \ operatorname {Ker} \ left (A-4I \ right) ^ {n} = \ left \ langle p_ {4}, p_ {5}, p_ {6} \ right \ rangle \ {\ text {with}} \ n \ geq 3 \ end {aligned}}}
The main spaces and eigenspaces for the two eigenvalues are thus, with the eigenspaces being subspaces of the respective main spaces:
Blow
(
A.
,
2
)
=
Ker
(
A.
-
2
I.
)
2
=
⟨
p
1
,
p
2
,
p
3
⟩
⊃
E.
(
A.
,
2
)
=
Ker
(
A.
-
2
I.
)
=
⟨
p
1
,
p
2
⟩
Blow
(
A.
,
4th
)
=
Ker
(
A.
-
4th
I.
)
3
=
⟨
p
4th
,
p
5
,
p
6th
⟩
⊃
E.
(
A.
,
4th
)
=
Ker
(
A.
-
4th
I.
)
=
⟨
p
4th
⟩
{\ displaystyle {\ begin {aligned} \ operatorname {Hau} (A, 2) = \ operatorname {Ker} (A-2I) ^ {2} = \ left \ langle p_ {1}, p_ {2}, p_ {3} \ right \ rangle & \ supset \ operatorname {E} (A, 2) = \ operatorname {Ker} (A-2I) = \ left \ langle p_ {1}, p_ {2} \ right \ rangle \ \\ operatorname {Hau} (A, 4) = \ operatorname {Ker} (A-4I) ^ {3} = \ left \ langle p_ {4}, p_ {5}, p_ {6} \ right \ rangle & \ supset \ operatorname {E} (A, 4) = \ operatorname {Ker} (A-4I) = \ left \ langle p_ {4} \ right \ rangle \ end {aligned}}}
The dimensions of the main spaces agree with the multiples of the zeros of the characteristic polynomial, i.e. and . The main rooms form a direct decomposition of , i. H. .
dim
(
Blow
(
A.
,
2
)
)
=
3
{\ displaystyle \ dim \ left (\ operatorname {Hau} (A, 2) \ right) = 3}
dim
(
Blow
(
A.
,
4th
)
)
=
3
{\ displaystyle \ dim \ left (\ operatorname {Hau} (A, 4) \ right) = 3}
V
=
R.
6th
{\ displaystyle V = \ mathbb {R} ^ {6}}
V
=
Blow
(
A.
,
2
)
⊕
Blow
(
A.
,
4th
)
{\ displaystyle V = \ operatorname {Hau} (A, 2) \ oplus \ operatorname {Hau} (A, 4)}
The matrix has a decomposition , whereby it is diagonalizable and nilpotent: with
A.
{\ displaystyle A}
A.
=
A.
D.
+
A.
N
{\ displaystyle A = A_ {D} + A_ {N}}
A.
D.
{\ displaystyle A_ {D}}
A.
N
{\ displaystyle A_ {N}}
P
-
1
(
A.
D.
+
A.
N
)
P
=
J
D.
+
J
N
{\ displaystyle P ^ {- 1} (A_ {D} + A_ {N}) P = J_ {D} + J_ {N}}
J
D.
=
[
2
0
0
0
0
0
0
2
0
0
0
0
0
0
2
0
0
0
0
0
0
4th
0
0
0
0
0
0
4th
0
0
0
0
0
0
4th
]
,
J
N
=
[
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
]
{\ displaystyle J_ {D} = {\ begin {bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0}} & 0, b \ matrix \ begin {{{{0} end \ N & 0} = = J \ begin \ } 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \ end {bmatrix}}}
literature
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">