The rimmed Hessian matrix (engl. Bordered Hessian ) is used for classification of stationary points in the multidimensional extreme problems with constraints. It is related to the "normal" Hesse matrix . In contrast to the Hessian matrix, which is examined for positive or negative definiteness , the sign of the determinant is decisive for the modified Hessian matrix .
The decisive factor is the sequence of signs of the leading major minors , whereby it applies that only the k leading major minors are examined for which the following applies: (m number of constraints) For example, if you examine a function for variables with a secondary condition, you have to consider, i.e. first the signs from the 3rd leading major minor (see also the following example).
k
>
2
m
{\ displaystyle k> 2m}
k
>
2
⋅
1
→
k
>
2
{\ displaystyle k> 2 \ cdot 1 \ rightarrow k> 2}
Be open The function is twice continuously differentiable and it has a local extreme under the constraints with . Be now
U
⊂
R.
n
{\ displaystyle U \ subset \ mathbb {R} ^ {n}}
f
:
U
→
R.
{\ displaystyle f: U \ rightarrow \ mathbb {R}}
a
∈
U
{\ displaystyle a \ in U}
F.
=
(
F.
1
,
...
,
F.
m
)
:
U
→
R.
m
{\ displaystyle F = (F_ {1}, \ ldots, \, F_ {m}): U \ rightarrow \ mathbb {R} ^ {m}}
m
<
n
{\ displaystyle m <n}
L.
(
λ
1
,
...
,
λ
m
,
x
)
: =
f
(
x
)
-
∑
i
=
1
m
λ
i
F.
i
(
x
)
{\ displaystyle L (\ lambda _ {1}, \ ldots, \, \ lambda _ {m}, \, x): = f (x) - \ sum _ {i = 1} ^ {m} \ lambda _ {i} F_ {i} (x)}
the Lagrange function, which is short for . Then the rimmed Hessian matrix is understood to be the matrix
x
{\ displaystyle x}
x
1
,
...
,
x
n
{\ displaystyle x_ {1}, \ ldots, \, x_ {n}}
(
n
+
m
)
×
(
n
+
m
)
{\ displaystyle (n + m) \ times (n + m)}
H
¯
(
λ
¯
,
a
)
: =
(
∂
2
L.
∂
λ
1
2
...
∂
2
L.
∂
λ
1
∂
λ
m
∂
2
L.
∂
λ
1
∂
x
1
...
∂
2
L.
∂
λ
1
∂
x
n
⋮
⋱
⋮
⋮
⋮
∂
2
L.
∂
λ
m
∂
λ
1
...
∂
2
L.
∂
λ
m
2
∂
2
L.
∂
λ
m
∂
x
1
...
∂
2
L.
∂
λ
m
∂
x
n
∂
2
L.
∂
x
1
∂
λ
1
...
∂
2
L.
∂
x
1
∂
λ
m
∂
2
L.
∂
x
1
2
...
∂
2
L.
∂
x
1
∂
x
n
⋮
⋮
⋮
⋱
⋮
∂
2
L.
∂
x
n
∂
λ
1
...
∂
2
L.
∂
x
n
∂
λ
m
∂
2
L.
∂
x
n
∂
x
1
...
∂
2
L.
∂
x
n
2
)
(
λ
¯
,
a
)
{\ displaystyle {\ begin {aligned} \ operatorname {\ overline {H}} ({\ bar {\ lambda}}, \, a) &: = \ left ({\ begin {array} {cccccc} {\ frac {\ partial ^ {2} L} {\ partial \ lambda _ {1} ^ {2}}} & \ ldots & {\ frac {\ partial ^ {2} L} {\ partial \ lambda _ {1} \ partial \ lambda _ {m}}} & {\ frac {\ partial ^ {2} L} {\ partial \ lambda _ {1} \ partial x_ {1}}} & \ ldots & {\ frac {\ partial ^ {2} L} {\ partial \ lambda _ {1} \ partial x_ {n}}} \\\ vdots & \ ddots & \ vdots & \ vdots && \ vdots \\ {\ frac {\ partial ^ {2} L} {\ partial \ lambda _ {m} \ partial \ lambda _ {1}}} & \ ldots & {\ frac {\ partial ^ {2} L} {\ partial \ lambda _ {m} ^ {2} }} & {\ frac {\ partial ^ {2} L} {\ partial \ lambda _ {m} \ partial x_ {1}}} & \ ldots & {\ frac {\ partial ^ {2} L} {\ partial \ lambda _ {m} \ partial x_ {n}}} \\ {\ frac {\ partial ^ {2} L} {\ partial x_ {1} \ partial \ lambda _ {1}}} & \ ldots & {\ frac {\ partial ^ {2} L} {\ partial x_ {1} \ partial \ lambda _ {m}}} & {\ frac {\ partial ^ {2} L} {\ partial x_ {1} ^ {2}}} & \ ldots & {\ frac {\ partial ^ {2} L} {\ partial x_ {1} \ partial x_ {n}}} \\\ vdots && \ vdots & \ vdots & \ ddots & \ vdots \\ {\ frac {\ partial ^ {2} L} {\ partial x_ { n} \ partial \ lambda _ {1}}} & \ ldots & {\ frac {\ partial ^ {2} L} {\ partial x_ {n} \ partial \ lambda _ {m}}} & {\ frac { \ partial ^ {2} L} {\ partial x_ {n} \ partial x_ {1}}} & \ ldots & {\ frac {\ partial ^ {2} L} {\ partial x_ {n} ^ {2} }} \ end {array}} \ right) ({\ bar {\ lambda}}, \, a) \\\ end {aligned}}}
or already simplified
H
¯
(
λ
¯
,
a
)
: =
(
0
...
0
-
∂
F.
1
∂
x
1
...
-
∂
F.
1
∂
x
n
⋮
⋱
⋮
⋮
⋮
0
...
0
-
∂
F.
m
∂
x
1
...
-
∂
F.
m
∂
x
n
-
∂
F.
1
∂
x
1
...
-
∂
F.
m
∂
x
1
∂
2
L.
∂
x
1
2
...
∂
2
L.
∂
x
1
∂
x
n
⋮
⋮
⋮
⋱
⋮
-
∂
F.
1
∂
x
n
...
-
∂
F.
m
∂
x
n
∂
2
L.
∂
x
n
∂
x
1
...
∂
2
L.
∂
x
n
2
)
(
λ
¯
,
a
)
{\ displaystyle {\ begin {aligned} \ operatorname {\ overline {H}} ({\ bar {\ lambda}}, \, a) &: = \ left ({\ begin {array} {cccccc} 0 & \ ldots & 0 & - {\ frac {\ partial F_ {1}} {\ partial x_ {1}}} & \ ldots & - {\ frac {\ partial F_ {1}} {\ partial x_ {n}}} \\\ vdots & \ ddots & \ vdots & \ vdots && \ vdots \\ 0 & \ ldots & 0 & - {\ frac {\ partial F_ {m}} {\ partial x_ {1}}} & \ ldots & - {\ frac {\ partial F_ {m}} {\ partial x_ {n}}} \\ - {\ frac {\ partial F_ {1}} {\ partial x_ {1}}} & \ ldots & - {\ frac {\ partial F_ {m}} {\ partial x_ {1}}} & {\ frac {\ partial ^ {2} L} {\ partial x_ {1} ^ {2}}} & \ ldots & {\ frac {\ partial ^ {2} L} {\ partial x_ {1} \ partial x_ {n}}} \\\ vdots && \ vdots & \ vdots & \ ddots & \ vdots \\ - {\ frac {\ partial F_ {1}} {\ partial x_ {n}}} & \ ldots & - {\ frac {\ partial F_ {m}} {\ partial x_ {n}}} & {\ frac {\ partial ^ {2} L} {\ partial x_ {n} \ partial x_ {1}}} & \ ldots & {\ frac {\ partial ^ {2} L} {\ partial x_ {n} ^ {2}}} \ end {array}} \ right) ({\ bar {\ lambda}}, \, a) \ end {aligned}}}
with the associated solutions of the auxiliary variables.
λ
¯
=
λ
¯
1
,
...
,
λ
¯
m
{\ displaystyle {\ bar {\ lambda}} = {\ bar {\ lambda}} _ {1}, \ ldots, \, {\ bar {\ lambda}} _ {m}}
Shape (2-dimensional case)
For a two-dimensional function with a secondary condition, the modified Hessian matrix has the following form.
Let be the Lagrangian , where is any two-dimensional function and the constraint under which optimization should be performed.
L.
(
x
1
,
x
2
)
=
f
(
x
1
,
x
2
)
+
λ
G
(
x
1
,
x
2
)
{\ displaystyle L (x_ {1}, x_ {2}) = f (x_ {1}, x_ {2}) + \ lambda g (x_ {1}, x_ {2})}
f
:
R.
2
→
R.
,
(
x
1
,
x
2
)
↦
f
(
x
1
,
x
2
)
{\ displaystyle f: \ mathbb {R} ^ {2} \ rightarrow \ mathbb {R}, (x_ {1}, x_ {2}) \ mapsto f (x_ {1}, x_ {2})}
G
(
x
1
,
x
2
)
=
0
{\ displaystyle g (x_ {1}, x_ {2}) = 0 \,}
H
¯
(
x
)
=
(
0
G
x
1
G
x
2
G
x
1
L.
x
1
x
1
L.
x
1
x
2
G
x
2
L.
x
2
x
1
L.
x
2
x
2
)
=
(
0
∂
G
∂
x
1
∂
G
∂
x
2
∂
G
∂
x
1
∂
2
L.
∂
x
1
2
∂
2
L.
∂
x
1
∂
x
2
∂
G
∂
x
2
∂
2
L.
∂
x
2
∂
x
1
∂
2
L.
∂
x
2
2
)
{\ displaystyle \ operatorname {\ bar {H}} (x) = {\ begin {pmatrix} 0 & g_ {x1} & g_ {x2} \\ g_ {x1} & L_ {x1x1} & L_ {x1x2} \\ g_ {x2} & L_ {x2x1} & L_ {x2x2} \\\ end {pmatrix}} = {\ begin {pmatrix} 0 & {\ frac {\ partial g} {\ partial x_ {1}}} & {\ frac {\ partial g} {\ partial x_ {2}}} \\ [1.5ex] {\ frac {\ partial g} {\ partial x_ {1}}} & {\ frac {\ partial ^ {2} L} {\ partial x_ { 1} ^ {2}}} & {\ frac {\ partial ^ {2} L} {\ partial x_ {1} \ partial x_ {2}}} \\ [1.5ex] {\ frac {\ partial g} {\ partial x_ {2}}} & {\ frac {\ partial ^ {2} L} {\ partial x_ {2} \ partial x_ {1}}} & {\ frac {\ partial ^ {2} L} {\ partial x_ {2} ^ {2}}} \\\ end {pmatrix}}}
The one at the top left in the matrix comes about through .
0
{\ displaystyle 0}
H
¯
11
=
∂
2
L.
∂
λ
2
{\ displaystyle \ operatorname {\ bar {H}} _ {11} = {\ frac {\ partial ^ {2} L} {\ partial \ lambda ^ {2}}}}
A stationary position of is then subject to the secondary condition
x
0
{\ displaystyle x_ {0}}
f
{\ displaystyle f}
G
{\ displaystyle g}
local maximum if
det
H
¯
(
x
0
)
>
0
{\ displaystyle \ det {\ bar {H}} (x_ {0})> 0}
local minimum if
det
H
¯
(
x
0
)
<
0
{\ displaystyle \ det {\ bar {H}} (x_ {0}) <0}
undecidable if
det
H
¯
(
x
0
)
=
0
{\ displaystyle \ det {\ bar {H}} (x_ {0}) = 0}
Web links
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">