The Hellmann-Feynman theorem  is a theorem in quantum mechanics  , which relates the energy eigenvalues of a time-independent Hamilton operator  to the parameters it contains. It is named after its discoverers Hans Hellmann  (1936) and Richard Feynman  (1939).
In general, the theorem says:
  
    
      
        
          
            
              ∂ 
              
                
                  E. 
                  
                    n 
                   
                 
               
             
            
              ∂ 
              
                λ 
               
             
           
         
        = 
        ∫ 
        
          
            ψ 
            
              n 
             
            
              ∗ 
             
           
          
            
              
                ∂ 
                
                  
                    
                      H 
                      ^ 
                     
                   
                 
               
              
                ∂ 
                
                  λ 
                 
               
             
           
          
            ψ 
            
              n 
             
           
          d 
          τ 
         
       
     
    {\ displaystyle {\ frac {\ partial {E_ {n}}} {\ partial {\ lambda}}} = \ int {\ psi _ {n} ^ {*} {\ frac {\ partial {\ hat {H }}} {\ partial {\ lambda}}} \ psi _ {n} d \ tau}} 
   
 
  
    
      
        
          
            
              H 
              ^ 
             
           
         
       
     
    {\ displaystyle {\ hat {H}}} 
   
 Hamilton operator  ,
  
    
      
        
          E. 
          
            n 
           
         
       
     
    {\ displaystyle E_ {n}} 
   
 
  
    
      
        
          ψ 
          
            n 
           
         
       
     
    {\ displaystyle \ psi _ {n}} 
   
 
  
    
      
        λ 
       
     
    {\ displaystyle \ lambda} 
   
 
and means a complete integration over the entire domain of definition of the eigenvectors.
  
    
      
        d 
        τ 
       
     
    {\ displaystyle d \ tau} 
   
 
The proof The proof, if you proceed in a purely formal manner, is quite simple. In Dirac's Bra-Ket notation, the following  can be written:
  
    
      
        
          
            
              
                
                  
                    
                      ∂ 
                      
                        E. 
                        
                          λ 
                         
                       
                     
                    
                      ∂ 
                      λ 
                     
                   
                 
               
              
                = 
                
                  
                    ∂ 
                    
                      ∂ 
                      λ 
                     
                   
                 
                ⟨ 
                ψ 
                ( 
                λ 
                ) 
                
                  | 
                 
                
                  
                    
                      
                        H 
                        ^ 
                       
                     
                   
                  
                    λ 
                   
                 
                
                  | 
                 
                ψ 
                ( 
                λ 
                ) 
                ⟩ 
               
             
            
              
                = 
                ⟨ 
                
                  
                    
                      ∂ 
                      ψ 
                      ( 
                      λ 
                      ) 
                     
                    
                      ∂ 
                      λ 
                     
                   
                 
                
                  | 
                 
                
                  
                    
                      
                        H 
                        ^ 
                       
                     
                   
                  
                    λ 
                   
                 
                
                  | 
                 
                ψ 
                ( 
                λ 
                ) 
                ⟩ 
                + 
                ⟨ 
                ψ 
                ( 
                λ 
                ) 
                
                  | 
                 
                
                  
                    
                      
                        H 
                        ^ 
                       
                     
                   
                  
                    λ 
                   
                 
                
                  | 
                 
                
                  
                    
                      ∂ 
                      ψ 
                      ( 
                      λ 
                      ) 
                     
                    
                      ∂ 
                      λ 
                     
                   
                 
                ⟩ 
                + 
                ⟨ 
                ψ 
                ( 
                λ 
                ) 
                
                  | 
                 
                
                  
                    
                      ∂ 
                      
                        
                          
                            
                              H 
                              ^ 
                             
                           
                         
                        
                          λ 
                         
                       
                     
                    
                      ∂ 
                      λ 
                     
                   
                 
                
                  | 
                 
                ψ 
                ( 
                λ 
                ) 
                ⟩ 
               
             
            
              
                = 
                
                  E. 
                  
                    λ 
                   
                 
                ⟨ 
                
                  
                    
                      ∂ 
                      ψ 
                      ( 
                      λ 
                      ) 
                     
                    
                      ∂ 
                      λ 
                     
                   
                 
                
                  | 
                 
                ψ 
                ( 
                λ 
                ) 
                ⟩ 
                + 
                
                  E. 
                  
                    λ 
                   
                 
                ⟨ 
                ψ 
                ( 
                λ 
                ) 
                
                  | 
                 
                
                  
                    
                      ∂ 
                      ψ 
                      ( 
                      λ 
                      ) 
                     
                    
                      ∂ 
                      λ 
                     
                   
                 
                ⟩ 
                + 
                ⟨ 
                ψ 
                ( 
                λ 
                ) 
                
                  | 
                 
                
                  
                    
                      ∂ 
                      
                        
                          
                            
                              H 
                              ^ 
                             
                           
                         
                        
                          λ 
                         
                       
                     
                    
                      ∂ 
                      λ 
                     
                   
                 
                
                  | 
                 
                ψ 
                ( 
                λ 
                ) 
                ⟩ 
               
             
            
              
                = 
                
                  E. 
                  
                    λ 
                   
                 
                
                  
                    ∂ 
                    
                      ∂ 
                      λ 
                     
                   
                 
                ⟨ 
                ψ 
                ( 
                λ 
                ) 
                
                  | 
                 
                ψ 
                ( 
                λ 
                ) 
                ⟩ 
                + 
                ⟨ 
                ψ 
                ( 
                λ 
                ) 
                
                  | 
                 
                
                  
                    
                      ∂ 
                      
                        
                          
                            
                              H 
                              ^ 
                             
                           
                         
                        
                          λ 
                         
                       
                     
                    
                      ∂ 
                      λ 
                     
                   
                 
                
                  | 
                 
                ψ 
                ( 
                λ 
                ) 
                ⟩ 
               
             
            
              
                = 
                ⟨ 
                ψ 
                ( 
                λ 
                ) 
                
                  | 
                 
                
                  
                    
                      ∂ 
                      
                        
                          
                            
                              H 
                              ^ 
                             
                           
                         
                        
                          λ 
                         
                       
                     
                    
                      ∂ 
                      λ 
                     
                   
                 
                
                  | 
                 
                ψ 
                ( 
                λ 
                ) 
                ⟩ 
                . 
               
             
           
         
       
     
    {\ displaystyle {\ begin {aligned} {\ frac {\ partial E _ {\ lambda}} {\ partial \ lambda}} & = {\ frac {\ partial} {\ partial \ lambda}} \ langle \ psi (\ lambda) | {\ hat {H}} _ {\ lambda} | \ psi (\ lambda) \ rangle \\ & = \ langle {\ frac {\ partial \ psi (\ lambda)} {\ partial \ lambda}} | {\ hat {H}} _ {\ lambda} | \ psi (\ lambda) \ rangle + \ langle \ psi (\ lambda) | {\ hat {H}} _ {\ lambda} | {\ frac {\ partial \ psi (\ lambda)} {\ partial \ lambda}} \ rangle + \ langle \ psi (\ lambda) | {\ frac {\ partial {\ hat {H}} _ {\ lambda}} {\ partial \ lambda}} | \ psi (\ lambda) \ rangle \\ & = E _ {\ lambda} \ langle {\ frac {\ partial \ psi (\ lambda)} {\ partial \ lambda}} | \ psi (\ lambda) \ rangle + E _ {\ lambda} \ langle \ psi (\ lambda) | {\ frac {\ partial \ psi (\ lambda)} {\ partial \ lambda}} \ rangle + \ langle \ psi (\ lambda) | { \ frac {\ partial {\ hat {H}} _ {\ lambda}} {\ partial \ lambda}} | \ psi (\ lambda) \ rangle \\ & = E _ {\ lambda} {\ frac {\ partial} {\ partial \ lambda}} \ langle \ psi (\ lambda) | \ psi (\ lambda) \ rangle + \ langle \ psi (\ lambda) | {\ frac {\ partial {\ hat {H}} _ {\ lambda}} {\ partial \ lambda}} | \ psi (\ lambda) \ rangle \\ & = \ langle \ psi (\ lambda) | {\ frac {\ partial {\ hat {H}} _ {\ lambda}} {\ partial \ lambda} } | \ psi (\ lambda) \ rangle. \ end {aligned}}} 
   
 there applies:
  
    
      
        
          
            
              
                H 
                ^ 
               
             
           
          
            λ 
           
         
        
          | 
         
        ψ 
        ( 
        λ 
        ) 
        ⟩ 
        = 
        
          E. 
          
            λ 
           
         
        
          | 
         
        ψ 
        ( 
        λ 
        ) 
        ⟩ 
        , 
       
     
    {\ displaystyle {\ hat {H}} _ {\ lambda} | \ psi (\ lambda) \ rangle = E _ {\ lambda} | \ psi (\ lambda) \ rangle,} 
   
 
  
    
      
        ⟨ 
        ψ 
        ( 
        λ 
        ) 
        
          | 
         
        ψ 
        ( 
        λ 
        ) 
        ⟩ 
        = 
        1 
        ⇒ 
        
          
            ∂ 
            
              ∂ 
              λ 
             
           
         
        ⟨ 
        ψ 
        ( 
        λ 
        ) 
        
          | 
         
        ψ 
        ( 
        λ 
        ) 
        ⟩ 
        = 
        0. 
       
     
    {\ displaystyle \ langle \ psi (\ lambda) | \ psi (\ lambda) \ rangle = 1 \ Rightarrow {\ frac {\ partial} {\ partial \ lambda}} \ langle \ psi (\ lambda) | \ psi ( \ lambda) \ rangle = 0.} 
   
  
For a critical, mathematical consideration of this proof, see.
Individual evidence 
↑  Hellmann Introduction to Quantum Chemistry  , Deuticke, Leipzig and Vienna 1937 (translation from Russian) 
 
↑  Richard Feynman Forces in Molecules  , Physical Review, Volume 56, 1939, pp. 340-343 
 
↑  David Carfì: The pointwise Hellmann-Feynman theorem  . In:   AAPP Physical, Mathematical, and Natural Sciences  . 88, No. 1, 2010, ISSN   1825-1242 doi  : 10.1478 / C1A1001004   
 
 
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">