A non-injective immersion: 
R   →  
R  2  , 
t   ↦ ( 
t  2   - 1,  
t   ( 
t  2   - 1))
 
 In differential topology  , immersion  is understood to be a smooth mapping   between manifolds  and when the  push forward of  this mapping is  injective  at every point . If there is also a  topological embedding  , one speaks of a  (smooth) embedding  . In this case the image of the map is too diffeomorphic a  submanifold  of
  
    
      
        F. 
        : 
        M. 
        → 
        N 
       
     
    {\ displaystyle F \ colon M \ rightarrow N} 
   
 
  
    
      
        M. 
       
     
    {\ displaystyle M} 
   
 
  
    
      
        N 
       
     
    {\ displaystyle N} 
   
 
  
    
      
        
          F. 
          
            ∗ 
            p 
           
         
        : 
        
          T 
          
            p 
           
         
        M. 
        → 
        
          T 
          
            F. 
            ( 
            p 
            ) 
           
         
        N 
       
     
    {\ displaystyle F _ {\ ast p} \ colon T_ {p} M \ to T_ {F (p)} N} 
   
 
  
    
      
        p 
        ∈ 
        M. 
       
     
    {\ displaystyle p \ in M} 
   
 
  
    
      
        F. 
       
     
    {\ displaystyle F} 
   
 
  
    
      
        M. 
       
     
    {\ displaystyle M} 
   
 
  
    
      
        N 
        . 
       
     
    {\ displaystyle N.} 
   
  
The properties of the image in the general case are described in the entry Immersed Manifold  .
Immersion in Euclidean space If there is the special case of a mapping between Euclidean spaces, then it represents nothing other than the total derivative  or the  Jacobi matrix  , whereby the  Euclidean space is identified  in a natural way with its  tangential space  and a linear mapping with a matrix.
  
    
      
        F. 
        : 
        
          
            R. 
           
          
            m 
           
         
        → 
        
          
            R. 
           
          
            n 
           
         
       
     
    {\ displaystyle F: \ mathbb {R} ^ {m} \ rightarrow \ mathbb {R} ^ {n}} 
   
 
  
    
      
        
          F. 
          
            ∗ 
           
         
        : 
        
          T 
          
            p 
           
         
        
          
            R. 
           
          
            m 
           
         
        → 
        
          T 
          
            F. 
            ( 
            p 
            ) 
           
         
        
          
            R. 
           
          
            n 
           
         
       
     
    {\ displaystyle F _ {\ ast}: T_ {p} \ mathbb {R} ^ {m} \ rightarrow T_ {F (p)} \ mathbb {R} ^ {n}} 
   
 
  
    
      
        D. 
        F. 
        ( 
        p 
        ) 
        : 
        
          
            R. 
           
          
            m 
           
         
        → 
        
          
            R. 
           
          
            n 
           
         
       
     
    {\ displaystyle DF (p) \ colon \ mathbb {R} ^ {m} \ rightarrow \ mathbb {R} ^ {n}} 
   
  
Immersion in manifolds In general, a differentiable mapping is an immersion if and only if the rank of  the linear mapping is equal to the dimension of the manifold for all of them , that is, it applies
  
    
      
        F. 
        : 
        M. 
        → 
        N 
       
     
    {\ displaystyle F: M \ rightarrow N} 
   
 
  
    
      
        p 
        ∈ 
        M. 
       
     
    {\ displaystyle p \ in M} 
   
 
  
    
      
        
          F. 
          
            ∗ 
           
         
       
     
    {\ displaystyle F _ {\ ast}} 
   
 
  
    
      
        M. 
       
     
    {\ displaystyle M} 
   
  
  
    
      
        rank 
         
        
          F. 
          
            p 
           
         
        = 
        dim 
         
        ( 
        image 
         
        ( 
        
          F. 
          
            ∗ 
            p 
           
         
        ) 
        ) 
        = 
        dim 
         
        M. 
        . 
       
     
    {\ displaystyle \ operatorname {rank} F_ {p} = \ dim (\ operatorname {image} (F _ {\ ast p})) = \ dim M.} 
   
 
Regular homotopy 
 
Two immersions are regularly called homotopic  if there is a  homotopy  with such that the mapping
 for each
  
    
      
        
          F. 
          
            0 
           
         
        , 
        
          F. 
          
            1 
           
         
        : 
        M. 
        → 
        N 
       
     
    {\ displaystyle F_ {0}, F_ {1} \ colon M \ to N} 
   
 
  
    
      
        F. 
        : 
        M. 
        × 
        
          [ 
          
            0 
            , 
            1 
           
          ] 
         
        → 
        N 
       
     
    {\ displaystyle F \ colon M \ times \ left [0,1 \ right] \ to N} 
   
 
  
    
      
        F. 
        ( 
        m 
        , 
        0 
        ) 
        = 
        
          F. 
          
            0 
           
         
        ( 
        m 
        ) 
        , 
        F. 
        ( 
        m 
        , 
        1 
        ) 
        = 
        
          F. 
          
            1 
           
         
        ( 
        m 
        ) 
        ∀ 
        m 
        ∈ 
        M. 
       
     
    {\ displaystyle F (m, 0) = F_ {0} (m), F (m, 1) = F_ {1} (m) \ forall m \ in M} 
   
 
  
    
      
        t 
        ∈ 
        
          [ 
          
            0 
            , 
            1 
           
          ] 
         
       
     
    {\ displaystyle t \ in \ left [0,1 \ right]} 
   
  
  
    
      
        
          F. 
          
            t 
           
         
        : 
        M. 
        → 
        N 
       
     
    {\ displaystyle F_ {t} \ colon M \ to N} 
   
 
  
    
      
        
          F. 
          
            t 
           
         
        ( 
        m 
        ) 
        = 
        F. 
        ( 
        m 
        , 
        t 
        ) 
       
     
    {\ displaystyle F_ {t} (m) = F (m, t)} 
   
  
is an immersion again.
The Hirsch-Smale theory  deals with the regular homotopy classes of immersions .
See also literature John M. Lee: Introduction to Smooth Manifolds  (= Graduate Texts in Mathematics  218). Springer-Verlag, New York NY et al. 2003, ISBN 0-387-95448-1  . 
 
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">