The Kronecker lemma deals with limits in mathematics. It is named after the German mathematician
Leopold Kronecker .
lemma
Be a sequence of real numbers.
(
a
k
)
k
∈
N
{\ displaystyle (a_ {k}) _ {k \ in \ mathbb {N}}}
Let be a monotonic, unbounded sequence of positive real numbers.
(
b
k
)
k
∈
N
{\ displaystyle (b_ {k}) _ {k \ in \ mathbb {N}}}
If converges, it follows .
∑
k
=
1
n
a
k
b
k
{\ displaystyle \ sum _ {k = 1} ^ {n} {\ frac {a_ {k}} {b_ {k}}}}
1
b
n
∑
k
=
1
n
a
k
→
0
{\ displaystyle {\ frac {1} {b_ {n}}} \ sum _ {k = 1} ^ {n} a_ {k} \ to 0}
Inference
The above lemma simplifies to the following statement when setting for all :
b
k
=
k
{\ displaystyle b_ {k} = k}
k
∈
N
{\ displaystyle k \ in \ mathbb {N}}
Be a sequence of real numbers.
(
a
k
)
k
∈
N
{\ displaystyle (a_ {k}) _ {k \ in \ mathbb {N}}}
If converges, it follows .
∑
k
=
1
n
a
k
k
{\ displaystyle \ sum _ {k = 1} ^ {n} {\ frac {a_ {k}} {k}}}
1
n
∑
k
=
1
n
a
k
→
0
{\ displaystyle {\ frac {1} {n}} \ sum _ {k = 1} ^ {n} a_ {k} \ to 0}
application
Kronecker's lemma can be used to prove the strong law of large numbers .
literature
Albrecht Irle : Probability Theory and Statistics: Basics - Results - Applications . 2nd Edition. Vieweg + Teubner, 2005, ISBN 978-3-519-12395-8 . Pages 190 and 194
Acta Mathematica Hungarica, Volume 44, Numbers 1-2, March 1984, pages 143 and 144
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">