The mathematical term of the algebraic group represents the synthesis of group theory and algebraic geometry . A central example is the group of invertible n × n matrices .
definition
An algebraic group is a group object in the category of algebraic varieties over a solid body , d. H. an affine algebraic variety over a field together with
G
{\ displaystyle G}
k
{\ displaystyle k}
a morphism (multiplication)
m
:
G
×
G
→
G
{\ displaystyle m \ colon G \ times G \ to G}
a morphism (inverse element)
i
:
G
→
G
{\ displaystyle i \ colon G \ to G}
and a distinguished point (neutral element),
e
∈
G
(
k
)
{\ displaystyle e \ in G (k)}
so that the following conditions are met:
Associative law : ;
m
∘
(
m
×
i
d
G
)
=
m
∘
(
i
d
G
×
m
)
{\ displaystyle m \ circ (m \ times \ mathrm {id} _ {G}) = m \ circ (\ mathrm {id} _ {G} \ times m)}
neutral element: ;
m
∘
(
i
d
G
×
e
)
=
i
d
G
=
m
∘
(
e
×
i
d
G
)
{\ displaystyle m \ circ (\ mathrm {id} _ {G} \ times e) = \ mathrm {id} _ {G} = m \ circ (e \ times \ mathrm {id} _ {G})}
inverse element: ; here is the inclusion of the diagonal ( ) and the structural morphism.
m
∘
(
i
×
i
d
G
)
∘
Δ
G
=
e
∘
ξ
=
m
∘
(
i
d
G
×
i
)
∘
Δ
G
{\ displaystyle m \ circ (i \ times \ mathrm {id} _ {G}) \ circ \ Delta _ {G} = e \ circ \ xi = m \ circ (\ mathrm {id} _ {G} \ times i) \ circ \ Delta _ {G}}
Δ
G
:
G
→
G
×
G
{\ displaystyle \ Delta _ {G} \ colon G \ to G \ times G}
G
↦
(
G
,
G
)
{\ displaystyle g \ mapsto (g, g)}
ξ
:
G
→
S.
p
e
c
(
k
)
{\ displaystyle \ xi \ colon G \ to Spec (k)}
These conditions are equivalent to the requirement that for every - scheme on the set of - valued points define the structure of an (ordinary) group.
(
m
,
i
,
e
)
{\ displaystyle (m, i, e)}
k
{\ displaystyle k}
T
{\ displaystyle T}
G
(
T
)
{\ displaystyle G (T)}
T
{\ displaystyle T}
Examples
The additive group : with addition as a group structure. In particular for is the affine line with addition.
G
a
{\ displaystyle \ mathbb {G} _ {\ mathrm {a}}}
G
a
(
T
)
=
Γ
(
T
,
O
T
)
{\ displaystyle \ mathbb {G} _ {\ mathrm {a}} (T) = \ Gamma (T, {\ mathcal {O}} _ {T})}
T
=
k
{\ displaystyle T = k}
G
a
=
(
k
,
+
)
{\ displaystyle \ mathbb {G} _ {\ mathrm {a}} = (k, +)}
A.
1
{\ displaystyle \ mathrm {A} ^ {1}}
The multiplicative group : with multiplication as a group structure. In particular for is the open subset with multiplication.
G
m
{\ displaystyle \ mathbb {G} _ {\ mathrm {m}}}
G
m
(
T
)
=
Γ
(
T
,
O
T
×
)
{\ displaystyle \ mathbb {G} _ {\ mathrm {m}} (T) = \ Gamma (T, {\ mathcal {O}} _ {T} ^ {\ times})}
T
=
k
{\ displaystyle T = k}
G
m
=
(
k
×
,
×
)
{\ displaystyle \ mathbb {G} _ {\ mathrm {m}} = (k ^ {\ times}, \ times)}
A.
1
-
{
0
}
{\ displaystyle \ mathrm {A} ^ {1} - \ left \ {0 \ right \}}
The general linear group : ; The right side denotes the group of invertible matrices with entries in the ring . can be identified with.
G
L.
n
{\ displaystyle \ mathrm {GL} _ {n}}
G
L.
n
(
T
)
=
G
L.
n
(
Γ
(
T
,
O
T
)
)
{\ displaystyle \ mathrm {GL} _ {n} (T) = \ mathrm {GL} _ {n} (\ Gamma (T, {\ mathcal {O}} _ {T}))}
n
×
n
{\ displaystyle n \ times n}
Γ
(
T
,
O
T
)
{\ displaystyle \ Gamma (T, {\ mathcal {O}} _ {T})}
G
L.
1
{\ displaystyle \ mathrm {GL} _ {1}}
G
m
{\ displaystyle \ mathbb {G} _ {\ mathrm {m}}}
The core of a morphism of algebraic groups is again an algebraic group. For example is an algebraic group.
f
:
G
→
H
{\ displaystyle f: G \ rightarrow H}
S.
L.
n
(
T
)
=
k
e
r
(
d
e
t
-
1
)
{\ displaystyle \ mathrm {SL} _ {n} (T) = ker (det-1)}
Elliptic curves or, more generally, Abelian varieties .
Zariski-closed subgroups of algebraic groups are again algebraic groups. Zariski-closed subgroups of are called linear algebraic groups . If an algebraic group is an affine variety, then it is a linear algebraic group.
G
L.
n
{\ displaystyle \ mathrm {GL} _ {n}}
Unipotent algebraic groups .
Chevalley's Theorem
Every algebraic group over a field of characteristic 0 is (in a unique way) an extension of an Abelian variety by a linear algebraic group. That means that for every algebraic group there is a maximal linear algebraic subgroup , this is normal and the quotient is an Abelian variety :
G
{\ displaystyle G}
G
a
f
f
{\ displaystyle G_ {aff}}
A.
(
G
)
: =
G
/
G
a
f
f
{\ displaystyle A (G): = G / G_ {aff}}
0
→
G
a
f
f
→
G
→
A.
(
G
)
→
0
{\ displaystyle 0 \ rightarrow G_ {aff} \ rightarrow G \ rightarrow A (G) \ rightarrow 0}
.
The picture is the Albanese picture .
G
→
A.
(
G
)
{\ displaystyle G \ rightarrow A (G)}
Individual evidence
↑ Conrad: Theorem by Chevalley (PDF file; 233 kB)
literature
James E. Humphreys : Linear Algebraic Groups. Springer, New York 1975, ISBN 3-540-90108-6 .
Armand Borel : Linear Algebraic Groups. 2nd edition, Springer, New York 1991, ISBN 3-540-97370-2 .
Tonny A. Springer : Linear Algebraic Groups. 2nd edition, Birkhäuser, Boston 1998, ISBN 3-7643-4021-5 .
Ina Kersten : Linear Algebraic Groups. Universitätsverlag Göttingen, 2007, ( PDF; 1.4 MB ).
Web links
Algebraic Groups by James S. Milne
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">