The Pochhammer symbol is a special function that is used in combinatorics and in the theory of hypergeometric functions . The name goes back to Leo August Pochhammer .
definition
The Pochhammer symbol is defined using the gamma function :
(
x
,
n
)
≡
Γ
(
x
+
n
)
Γ
(
x
)
{\ displaystyle (x, n) \ equiv {\ frac {\ Gamma (x + n)} {\ Gamma (x)}}}
From the functional equation of the gamma function it then follows
(
x
,
n
)
≡
x
(
x
+
1
)
⋯
(
x
+
n
-
1
)
{\ displaystyle (x, n) \ equiv x (x + 1) \ dotsm (x + n-1)}
.
So you have an identity
(
x
,
n
)
=
x
n
¯
{\ displaystyle (x, n) = x ^ {\ overline {n}}}
with the increasing factorial .
properties
Function graphs of the first four Pochhammer symbols
The Pochhammer symbol is a meromorphic function .
Is can be represented as a polynomial in . These have a common zero at .
n
∈
N
{\ displaystyle n \ in \ mathbb {N}}
(
x
,
n
)
{\ displaystyle (x, n)}
x
{\ displaystyle x}
x
=
0
{\ displaystyle x = 0}
Relationship between coefficients of different signs :
(
x
,
-
n
)
=
(
-
1
)
n
1
(
1
-
x
,
n
)
{\ displaystyle (x, -n) = (- 1) ^ {n} {\ frac {1} {(1-x, n)}}}
Division rule:
(
x
,
n
)
(
x
,
m
)
=
(
x
+
m
,
n
-
m
)
;
n
>
m
{\ displaystyle {\ frac {(x, n)} {(x, m)}} = (x + m, nm); \ quad n> m}
(
x
,
n
)
(
x
,
m
)
=
1
(
x
+
m
,
m
-
n
)
;
m
>
n
{\ displaystyle {\ frac {(x, n)} {(x, m)}} = {\ frac {1} {(x + m, mn)}}; \ quad m> n}
Special values:
(
1
,
n
)
=
n
!
{\ displaystyle (1, n) = n!}
(
1
2
,
n
)
=
2
-
n
(
2
n
-
1
)
!
!
{\ displaystyle ({\ tfrac {1} {2}}, n) = 2 ^ {- n} (2n-1) !!}
(
0
,
0
)
=
1
{\ displaystyle (0,0) = 1}
q pounding hammer icon
The - Pochhammer symbol is the - analogue of the Pochhammer symbol and plays a role in combinatorics for - analogues of classic formulas, where, stimulated by the border crossing
q
{\ displaystyle q}
q
{\ displaystyle q}
q
{\ displaystyle q}
lim
q
→
1
1
-
q
n
1
-
q
=
n
{\ displaystyle \ lim _ {q \ rightarrow 1} {\ frac {1-q ^ {n}} {1-q}} = n}
,
das - analogue of natural numbers above
q
{\ displaystyle q}
[
n
]
q
=
1
-
q
n
1
-
q
=
1
+
q
+
q
2
+
⋯
+
q
n
-
1
{\ displaystyle [n] _ {q} = {\ frac {1-q ^ {n}} {1-q}} = 1 + q + q ^ {2} + \ dotsb + q ^ {n-1} }
is defined.
The - Pochhammer symbol is defined by the formal power series in the variable :
q
{\ displaystyle q}
q
{\ displaystyle q}
(
a
;
q
)
n
=
∏
k
=
0
n
-
1
(
1
-
a
q
k
)
=
(
1
-
a
)
(
1
-
a
q
)
(
1
-
a
q
2
)
⋯
(
1
-
a
q
n
-
1
)
{\ displaystyle (a; q) _ {n} = \ prod _ {k = 0} ^ {n-1} (1-aq ^ {k}) = (1-a) (1-aq) (1- aq ^ {2}) \ dotsm (1-aq ^ {n-1})}
With
(
a
;
q
)
0
=
1
{\ displaystyle (a; q) _ {0} = 1}
.
They are also called - series and as abbreviated, e.g. B. .
q
{\ displaystyle q}
(
a
;
q
)
n
{\ displaystyle (a; q) _ {n}}
(
a
)
n
{\ displaystyle (a) _ {n}}
(
q
;
q
)
n
=
(
q
)
n
=
∏
k
=
1
n
(
1
-
q
k
)
=
(
1
-
q
)
(
1
-
q
2
)
⋯
(
1
-
q
n
)
{\ displaystyle (q; q) _ {n} = (q) _ {n} = \ prod _ {k = 1} ^ {n} (1-q ^ {k}) = (1-q) (1 -q ^ {2}) \ dotsm (1-q ^ {n})}
It can also be expanded into an infinite product:
(
a
;
q
)
∞
=
∏
k
=
0
∞
(
1
-
a
q
k
)
{\ displaystyle (a; q) _ {\ infty} = \ prod _ {k = 0} ^ {\ infty} (1-aq ^ {k})}
The special case
ϕ
(
q
)
=
(
q
;
q
)
∞
=
∏
k
=
1
∞
(
1
-
q
k
)
{\ displaystyle \ phi (q) = (q; q) _ {\ infty} = \ prod _ {k = 1} ^ {\ infty} (1-q ^ {k})}
is Euler's product, which plays a role in the theory of partition function .
Individual evidence
↑ L. Pochhammer: About the differential equation of the more general hypergeometric series with two finite singular points . Journal for pure and applied mathematics, Volume 102, pp. 76-159, 1888; especially pp. 80-81. Pochhammer uses the term for the binomial coefficient, for the falling factorial and for the increasing factorial.
(
x
)
n
{\ displaystyle (x) _ {n}}
[
x
]
n
{\ displaystyle [x] _ {n}}
[
x
]
n
+
{\ displaystyle [x] _ {n} ^ {+}}
↑ Eric W. Weisstein: Pochhammer symbol. In: MathWorld . Retrieved February 9, 2019 .
↑ Eric W. Weisstein: q -Pochhammer symbol. In: MathWorld . Retrieved February 9, 2019 .
↑ Eric W. Weisstein: q -Analog. In: MathWorld . Retrieved February 9, 2019 .
↑ Euler's partition product. Also Euler function in English , but this term is ambiguous.
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">