A posynomial function (also written as a posinomial function ) and the monomial function closely related to it are functions that are used in the formulation of geometric programs . They can be seen as generalizations of polynomial functions in several variables, since any real exponents are allowed.
definition
Be for as well as for . Then the function is called
R.
+
+
n
: =
{
x
∈
R.
n
|
x
i
>
0
{\ displaystyle \ mathbb {R} _ {++} ^ {n}: = \ {x \ in \ mathbb {R} ^ {n} \, | \, x_ {i}> 0}
i
=
1
,
...
,
n
}
{\ displaystyle i = 1, \ dots, n \}}
c
k
>
0
{\ displaystyle c_ {k}> 0}
k
=
1
,
...
,
N
{\ displaystyle k = 1, \ dots, N}
f
:
R.
+
+
n
→
R.
{\ displaystyle f \ colon \ mathbb {R} _ {++} ^ {n} \ to \ mathbb {R}}
f
(
x
1
,
...
,
x
n
)
=
∑
k
=
1
N
c
k
x
1
a
1
,
k
⋅
⋯
⋅
x
n
a
n
,
k
{\ displaystyle f (x_ {1}, \ dots, x_ {n}) = \ sum _ {k = 1} ^ {N} c_ {k} x_ {1} ^ {a_ {1, k}} \ cdot \ dots \ cdot x_ {n} ^ {a_ {n, k}}}
a posynomial function. Everyone is there . If the sum consists of only one sum term, one speaks of a monomial function.
a
i
,
j
∈
R.
{\ displaystyle a_ {i, j} \ in \ mathbb {R}}
example
The function
f
(
x
1
,
x
2
)
=
x
1
x
2
+
x
2
2
,
3
x
1
x
2
{\ displaystyle f (x_ {1}, x_ {2}) = {\ frac {{\ sqrt {x_ {1}}} x_ {2} + x_ {2} ^ {2 {,} 3}} {x_ {1} x_ {2}}}}
is a posynomial function, it has the normal representation
f
(
x
1
,
x
2
)
=
x
1
-
0
,
5
+
x
1
-
1
x
2
1
,
3
{\ displaystyle f (x_ {1}, x_ {2}) = x_ {1} ^ {- 0 {,} 5} + x_ {1} ^ {- 1} x_ {2} ^ {1 {,} 3 }}
The function
f
(
x
1
,
x
2
,
x
3
)
=
x
1
17th
x
2
x
3
2
{\ displaystyle f (x_ {1}, x_ {2}, x_ {3}) = {\ frac {x_ {1} ^ {17} x_ {2}} {x_ {3} ^ {\ sqrt {2} }}}}
is a monomial function, it has the normal representation
f
(
x
1
,
x
2
,
x
3
)
=
x
1
17th
x
2
x
3
-
2
{\ displaystyle f (x_ {1}, x_ {2}, x_ {3}) = x_ {1} ^ {17} x_ {2} x_ {3} ^ {- {\ sqrt {2}}}}
properties
Posynomial functions are closed under addition, multiplication and multiplication with positive scalars.
Monomial functions are completed under multiplication, division and positive scaling.
The posynomial functions thus in particular form a convex cone in the vector space of all functions , the monomial functions at least a (dotted) linear sub- cone .
R.
+
+
n
→
R.
{\ displaystyle \ mathbb {R} _ {++} ^ {n} \ to \ mathbb {R}}
literature
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">