S number function

from Wikipedia, the free encyclopedia

An s-number function is a mapping s commonly used in functional analysis , which assigns a sequence with the following properties to each operator for Banach spaces E and F :

  1. Monotony:
  2. Additivity: for
  3. Ideal property:
  4. Range property: for with
  5. Normalization:

The value is called n th s number of T called.

The approximation numbers, the Gelfand numbers, the Kolmogorow numbers, the Weyl numbers and the Tichomirov numbers are additive s-number functions. The most prominent representatives of the pseudo-s-number functions are the entropy numbers .

literature

  • Hermann König: Eigenvalue distribution of compact operators . In: Integral Equations and Operator Theory . tape 9 , no. 4 . Birkhauser Verlag, July 1986, ISSN  0378-620X , p. 610–612 , doi : 10.1007 / BF01204633 (contains an introduction to the theory of s-numbers).

Individual evidence

  1. ^ Albrecht Pietsch : Operator ideals. VEB Deutscher Verlag der Wissenschaft, 1978.