In mathematics  is composite  (ger .: join  ) topological spaces  one on John Milnor  declining construction of the topology  .
construction  
   
The combination of two 
intervals  (blue and green) is a 3-dimensional polytope (gray).
 
  
Association of two topological spaces 
 
Let and be two topological spaces. Their network  is defined as follows. The elements of are the couple 
  
    
      
        
          X 
          
            1 
           
         
       
     
    {\ displaystyle X_ {1}} 
   
 
  
    
      
        
          X 
          
            2 
           
         
       
     
    {\ displaystyle X_ {2}} 
   
   
  
    
      
        X 
        = 
        
          X 
          
            1 
           
         
        ∗ 
        
          X 
          
            2 
           
         
       
     
    {\ displaystyle X = X_ {1} * X_ {2}} 
   
 
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
  
  
    
      
        ( 
        
          t 
          
            1 
           
         
        
          x 
          
            1 
           
         
        , 
        
          t 
          
            2 
           
         
        
          x 
          
            2 
           
         
        ) 
       
     
    {\ displaystyle (t_ {1} x_ {1}, t_ {2} x_ {2})} 
   
  with ,
  
    
      
        
          x 
          
            1 
           
         
        ∈ 
        
          X 
          
            1 
           
         
        , 
        
          x 
          
            2 
           
         
        ∈ 
        
          X 
          
            2 
           
         
        , 
        
          t 
          
            1 
           
         
        , 
        
          t 
          
            2 
           
         
        ∈ 
        
          [ 
          
            0 
            , 
            1 
           
          ] 
         
        , 
        
          t 
          
            1 
           
         
        + 
        
          t 
          
            2 
           
         
        = 
        1 
       
     
    {\ displaystyle x_ {1} \ in X_ {1}, x_ {2} \ in X_ {2}, t_ {1}, t_ {2} \ in \ left [0,1 \ right], t_ {1} + t_ {2} = 1} 
   
   
where is an abbreviation for the couple and for all and all
  
    
      
        
          t 
          
            i 
           
         
        
          x 
          
            i 
           
         
       
     
    {\ displaystyle t_ {i} x_ {i}} 
   
 
  
    
      
        ( 
        
          t 
          
            i 
           
         
        , 
        
          x 
          
            i 
           
         
        ) 
       
     
    {\ displaystyle (t_ {i}, x_ {i})} 
   
 
  
    
      
        
          x 
          
            1 
           
         
        , 
        
          x 
          
            1 
           
          
            ′ 
           
         
        ∈ 
        
          X 
          
            1 
           
         
       
     
    {\ displaystyle x_ {1}, x_ {1} ^ {\ prime} \ in X_ {1}} 
   
 
  
    
      
        
          x 
          
            2 
           
         
        , 
        
          x 
          
            2 
           
          
            ′ 
           
         
        ∈ 
        
          X 
          
            2 
           
         
       
     
    {\ displaystyle x_ {2}, x_ {2} ^ {\ prime} \ in X_ {2}} 
   
  
  
    
      
        ( 
        0 
        
          x 
          
            1 
           
         
        , 
        1 
        
          x 
          
            2 
           
         
        ) 
        = 
        ( 
        0 
        
          x 
          
            1 
           
          
            ′ 
           
         
        , 
        1 
        
          x 
          
            2 
           
         
        ) 
       
     
    {\ displaystyle (0x_ {1}, 1x_ {2}) = (0x_ {1} ^ {\ prime}, 1x_ {2})} 
   
   and 
  
    
      
        ( 
        1 
        
          x 
          
            1 
           
         
        , 
        0 
        
          x 
          
            2 
           
         
        ) 
        = 
        ( 
        1 
        
          x 
          
            1 
           
         
        , 
        0 
        
          x 
          
            2 
           
          
            ′ 
           
         
        ) 
       
     
    {\ displaystyle (1x_ {1}, 0x_ {2}) = (1x_ {1}, 0x_ {2} ^ {\ prime})} 
   
  
  
is set. (So all points from are clearly connected to all points from by stretching the length .)
  
    
      
        
          X 
          
            1 
           
         
       
     
    {\ displaystyle X_ {1}} 
   
 
  
    
      
        
          X 
          
            2 
           
         
       
     
    {\ displaystyle X_ {2}} 
   
 
  
    
      
        1 
       
     
    {\ displaystyle 1} 
   
 
The topology on is by definition the coarsest topology (the topology with the fewest open sets) with respect to all coordinate mappings 
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
 
  
    
      
        
          t 
          
            i 
           
         
        : 
        X 
        → 
        
          [ 
          
            0 
            , 
            1 
           
          ] 
         
       
     
    {\ displaystyle t_ {i} \ colon X \ to \ left [0,1 \ right]} 
   
  
  
    
      
        ( 
        
          t 
          
            1 
           
         
        
          x 
          
            1 
           
         
        , 
        
          t 
          
            2 
           
         
        
          x 
          
            2 
           
         
        ) 
        → 
        
          t 
          
            i 
           
         
         
        ( 
        i 
        = 
        1 
        , 
        2 
        ) 
       
     
    {\ displaystyle (t_ {1} x_ {1}, t_ {2} x_ {2}) \ to t_ {i} \ quad (i = 1,2)} 
   
  
 
and
  
    
      
        
          x 
          
            i 
           
         
        : 
        
          { 
          
            ( 
            
              t 
              
                1 
               
             
            
              x 
              
                1 
               
             
            , 
            
              t 
              
                2 
               
             
            
              x 
              
                2 
               
             
            ) 
            : 
            
              t 
              
                i 
               
             
            ≠ 
            0 
           
          } 
         
        → 
        
          X 
          
            i 
           
         
       
     
    {\ displaystyle x_ {i} \ colon \ left \ {(t_ {1} x_ {1}, t_ {2} x_ {2}) \ colon t_ {i} \ not = 0 \ right \} \ to X_ { i}} 
   
  
  
    
      
        ( 
        
          t 
          
            1 
           
         
        
          x 
          
            1 
           
         
        , 
        
          t 
          
            2 
           
         
        
          x 
          
            2 
           
         
        ) 
        → 
        
          x 
          
            i 
           
         
         
        ( 
        i 
        = 
        1 
        , 
        2 
        ) 
       
     
    {\ displaystyle (t_ {1} x_ {1}, t_ {2} x_ {2}) \ to x_ {i} \ quad (i = 1,2)} 
   
  
 
are steady.
Examples  
The compound of a room with a point is the cone  above .
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
   
  
    
      
        C. 
        X 
       
     
    {\ displaystyle CX} 
   
 
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
   
The connection of a room with the 2-element room is the suspension  of .
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
 
  
    
      
        
          S. 
          
            0 
           
         
       
     
    {\ displaystyle S ^ {0}} 
   
   
  
    
      
        S. 
        X 
       
     
    {\ displaystyle SX} 
   
 
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
   
The union of two spheres   and is the -dimensional sphere .
  
    
      
        
          S. 
          
            k 
           
         
       
     
    {\ displaystyle S ^ {k}} 
   
 
  
    
      
        
          S. 
          
            l 
           
         
       
     
    {\ displaystyle S ^ {l}} 
   
 
  
    
      
        ( 
        k 
        + 
        l 
        + 
        1 
        ) 
       
     
    {\ displaystyle (k + l + 1)} 
   
 
  
    
      
        
          S. 
          
            k 
            + 
            l 
            + 
            1 
           
         
       
     
    {\ displaystyle S ^ {k + l + 1}} 
   
  
The compound of circles is the -dimensional sphere .
  
    
      
        k 
       
     
    {\ displaystyle k} 
   
 
  
    
      
        
          S. 
          
            1 
           
         
        ∗ 
        ... 
        ∗ 
        
          S. 
          
            1 
           
         
       
     
    {\ displaystyle S ^ {1} * \ ldots * S ^ {1}} 
   
 
  
    
      
        ( 
        2 
        k 
        - 
        1 
        ) 
       
     
    {\ displaystyle (2k-1)} 
   
 
  
    
      
        
          S. 
          
            2 
            k 
            - 
            1 
           
         
       
     
    {\ displaystyle S ^ {2k-1}} 
   
  
For the Cartesian product of   two CAT (0) -spaces  and their  geodetic boundaries  holds .
  
    
      
        
          X 
          
            1 
           
         
        × 
        
          X 
          
            2 
           
         
       
     
    {\ displaystyle X_ {1} \ times X_ {2}} 
   
   
  
    
      
        
          X 
          
            1 
           
         
        , 
        
          X 
          
            2 
           
         
       
     
    {\ displaystyle X_ {1}, X_ {2}} 
   
 
  
    
      
        
          ∂ 
          
            ∞ 
           
         
        ( 
        
          X 
          
            1 
           
         
        × 
        
          X 
          
            2 
           
         
        ) 
        = 
        
          ∂ 
          
            ∞ 
           
         
        
          X 
          
            1 
           
         
        ∗ 
        
          ∂ 
          
            ∞ 
           
         
        
          X 
          
            2 
           
         
       
     
    {\ displaystyle \ partial _ {\ infty} (X_ {1} \ times X_ {2}) = \ partial _ {\ infty} X_ {1} * \ partial _ {\ infty} X_ {2}} 
   
   
 
Spherical compound 
 
On the connection of two metric spaces   and one can define a metric as follows: The distance is the number in the interval for which 
  
    
      
        ( 
        
          X 
          
            1 
           
         
        , 
        
          d 
          
            1 
           
         
        ) 
       
     
    {\ displaystyle (X_ {1}, d_ {1})} 
   
 
  
    
      
        ( 
        
          X 
          
            2 
           
         
        , 
        
          d 
          
            2 
           
         
        ) 
       
     
    {\ displaystyle (X_ {2}, d_ {2})} 
   
 
  
    
      
        d 
        ( 
        ( 
        
          t 
          
            1 
           
         
        
          x 
          
            1 
           
         
        , 
        
          t 
          
            2 
           
         
        
          x 
          
            2 
           
         
        ) 
        , 
        ( 
        
          s 
          
            1 
           
         
        
          y 
          
            1 
           
         
        , 
        
          s 
          
            2 
           
         
        
          y 
          
            2 
           
         
        ) 
        ) 
       
     
    {\ displaystyle d ((t_ {1} x_ {1}, t_ {2} x_ {2}), (s_ {1} y_ {1}, s_ {2} y_ {2})))} 
   
 
  
    
      
        
          [ 
          
            0 
            , 
            π 
           
          ] 
         
       
     
    {\ displaystyle \ left [0, \ pi \ right]} 
   
 
  
    
      
        cos 
         
        ( 
        d 
        ( 
        ( 
        
          t 
          
            1 
           
         
        
          x 
          
            1 
           
         
        , 
        
          t 
          
            2 
           
         
        
          x 
          
            2 
           
         
        ) 
        , 
        ( 
        
          s 
          
            1 
           
         
        
          y 
          
            1 
           
         
        , 
        
          s 
          
            2 
           
         
        
          y 
          
            2 
           
         
        ) 
        ) 
        ) 
        = 
        
          
            
              t 
              
                1 
               
             
            
              s 
              
                1 
               
             
           
         
        cos 
         
        ( 
        m 
        i 
        n 
        
          { 
          
            π 
            , 
            
              d 
              
                1 
               
             
            ( 
            
              x 
              
                1 
               
             
            , 
            
              y 
              
                1 
               
             
            ) 
           
          } 
         
        ) 
        + 
        
          
            
              t 
              
                2 
               
             
            
              s 
              
                2 
               
             
           
         
        cos 
         
        ( 
        m 
        i 
        n 
        
          { 
          
            π 
            , 
            
              d 
              
                2 
               
             
            ( 
            
              x 
              
                2 
               
             
            , 
            
              y 
              
                2 
               
             
            ) 
           
          } 
         
        ) 
       
     
    {\ displaystyle \ cos (d ((t_ {1} x_ {1}, t_ {2} x_ {2}), (s_ {1} y_ {1}, s_ {2} y_ {2})))) = {\ sqrt {t_ {1} s_ {1}}} \ cos (min \ left \ {\ pi, d_ {1} (x_ {1}, y_ {1}) \ right \}) + {\ sqrt { t_ {2} s_ {2}}} \ cos (min \ left \ {\ pi, d_ {2} (x_ {2}, y_ {2}) \ right \})} 
   
  
applies. Note that the constraints on this metric are based on and not the original metrics , but rather give.
  
    
      
        
          X 
          
            1 
           
         
       
     
    {\ displaystyle X_ {1}} 
   
 
  
    
      
        
          X 
          
            2 
           
         
       
     
    {\ displaystyle X_ {2}} 
   
 
  
    
      
        
          d 
          
            i 
           
         
        ( 
        x 
        , 
        y 
        ) 
       
     
    {\ displaystyle d_ {i} (x, y)} 
   
 
  
    
      
        m 
        i 
        n 
        
          { 
          
            π 
            , 
            
              d 
              
                i 
               
             
            ( 
            x 
            , 
            y 
            ) 
           
          } 
         
       
     
    {\ displaystyle min \ left \ {\ pi, d_ {i} (x, y) \ right \}} 
   
 
The metric space is called the spherical compound of  the metric spaces and .
  
    
      
        ( 
        
          X 
          
            1 
           
         
        ∗ 
        
          X 
          
            2 
           
         
        , 
        d 
        ) 
       
     
    {\ displaystyle (X_ {1} * X_ {2}, d)} 
   
 
  
    
      
        ( 
        
          X 
          
            1 
           
         
        , 
        
          d 
          
            1 
           
         
        ) 
       
     
    {\ displaystyle (X_ {1}, d_ {1})} 
   
 
  
    
      
        ( 
        
          X 
          
            2 
           
         
        , 
        
          d 
          
            2 
           
         
        ) 
       
     
    {\ displaystyle (X_ {2}, d_ {2})} 
   
  
Association of an infinite number of topological spaces 
 
Let it be a family of topological spaces. The elements of the compound are the tuples 
  
    
      
        
          { 
          
            
              X 
              
                j 
               
             
            : 
            j 
            ∈ 
            J 
           
          } 
         
       
     
    {\ displaystyle \ left \ {X_ {j} \ colon j \ in J \ right \}} 
   
 
  
    
      
        X 
        = 
        
          ∗ 
          
            j 
            ∈ 
            J 
           
         
        
          X 
          
            j 
           
         
       
     
    {\ displaystyle X = * _ {y \ in J} X_ {j}} 
   
 
  
    
      
        J 
       
     
    {\ displaystyle J} 
   
 
  
    
      
        ( 
        
          t 
          
            j 
           
         
        
          x 
          
            j 
           
         
        : 
        j 
        ∈ 
        J 
        ) 
       
     
    {\ displaystyle (t_ {j} x_ {j} \ colon j \ in J)} 
   
  with almost everyone  .
  
    
      
        
          t 
          
            j 
           
         
        ∈ 
        
          [ 
          
            0 
            , 
            1 
           
          ] 
         
        , 
        
          x 
          
            j 
           
         
        ∈ 
        
          X 
          
            j 
           
         
        , 
        
          ∑ 
          
            j 
            ∈ 
            J 
           
         
        
          t 
          
            j 
           
         
        = 
        1 
        , 
       
     
    {\ displaystyle t_ {j} \ in \ left [0,1 \ right], x_ {j} \ in X_ {j}, \ sum _ {j \ in J} t_ {j} = 1,} 
   
     
  
    
      
        
          t 
          
            j 
           
         
        = 
        0 
       
     
    {\ displaystyle t_ {j} = 0} 
   
    
Two tuples and define the same element if and only if:
  
    
      
        ( 
        
          t 
          
            j 
           
         
        
          x 
          
            j 
           
         
        ) 
       
     
    {\ displaystyle (t_ {j} x_ {j})} 
   
 
  
    
      
        ( 
        
          u 
          
            j 
           
         
        
          y 
          
            j 
           
         
        ) 
       
     
    {\ displaystyle (u_ {j} y_ {j})} 
   
 
For everyone is .
  
    
      
        j 
        ∈ 
        J 
       
     
    {\ displaystyle j \ in J} 
   
 
  
    
      
        
          t 
          
            j 
           
         
        = 
        
          u 
          
            j 
           
         
       
     
    {\ displaystyle t_ {j} = u_ {j}} 
   
  
For all true: .
  
    
      
        j 
        ∈ 
        J 
       
     
    {\ displaystyle j \ in J} 
   
 
  
    
      
        
          t 
          
            j 
           
         
        ≠ 
        0 
        ⟹ 
        
          x 
          
            j 
           
         
        = 
        
          y 
          
            j 
           
         
       
     
    {\ displaystyle t_ {j} \ not = 0 \ Longrightarrow x_ {j} = y_ {j}} 
   
  
 
The topology on is the coarsest topology (the topology with the fewest open sets) with respect to all coordinate mappings 
  
    
      
        X 
       
     
    {\ displaystyle X} 
   
 
  
    
      
        
          t 
          
            j 
           
         
        : 
        X 
        → 
        
          [ 
          
            0 
            , 
            1 
           
          ] 
         
       
     
    {\ displaystyle t_ {j} \ colon X \ to \ left [0,1 \ right]} 
   
  
  
    
      
        ( 
        
          t 
          
            i 
           
         
        
          x 
          
            i 
           
         
        ) 
        → 
        
          t 
          
            j 
           
         
         
        ( 
        j 
        ∈ 
        J 
        ) 
       
     
    {\ displaystyle (t_ {i} x_ {i}) \ to t_ {j} \ quad (j \ in J)} 
   
  
 
and
  
    
      
        
          x 
          
            j 
           
         
        : 
        
          { 
          
            ( 
            
              t 
              
                i 
               
             
            
              x 
              
                i 
               
             
            ) 
            : 
            
              t 
              
                j 
               
             
            ≠ 
            0 
           
          } 
         
        → 
        
          X 
          
            j 
           
         
       
     
    {\ displaystyle x_ {j} \ colon \ left \ {(t_ {i} x_ {i}) \ colon t_ {j} \ not = 0 \ right \} \ to X_ {j}} 
   
  
  
    
      
        ( 
        
          t 
          
            i 
           
         
        
          x 
          
            i 
           
         
        ) 
        → 
        
          x 
          
            j 
           
         
         
        ( 
        j 
        ∈ 
        J 
        ) 
       
     
    {\ displaystyle (t_ {i} x_ {i}) \ to x_ {j} \ quad (j \ in J)} 
   
  
 
are steady.
Examples  
literature  
Tammo tom Dieck: Topology.  de Gruyter textbook. Walter de Gruyter & Co., Berlin 1991, ISBN 3-11-013187-0  ; 3-11-012463-7 
Martin R. Bridson; André Haefliger: Metric spaces of non-positive curvature.  Basic teaching of the mathematical sciences, 319. Springer, Berlin 1999, ISBN 3-540-64324-9 
 
 
Individual evidence  
↑    Berestovskiĭ, VN: Borsuk's problem on metrization of a polyhedron.  (Russian) Dokl. Akad. Nauk SSSR 268 (1983), no. 2, 273-277. 
 
 
 
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">