List of equations in classical mechanics: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
→‎Mechanical oscillators: Angular frequency is sqrt(Kappa/I) not sqrt(I/Kappa)
mNo edit summary
Tags: Visual edit Mobile edit Mobile web edit
 
(48 intermediate revisions by 39 users not shown)
Line 1: Line 1:
{{Short description|none}}
[[Classical mechanics]] is the branch of [[physics]] used to describe the motion of [[macroscopic]] objects.<ref>{{Harvnb|Mayer|Sussman|Wisdom|2001|p=xiii}}</ref> It is the most familiar of the theories of physics. The concepts it covers, such as [[mass]], [[acceleration]], and [[force]], are commonly used and known.<ref>{{Harvnb|Berkshire|Kibble|2004|p=1}}</ref> The subject is based upon a [[three-dimensional space|three-dimensional]] [[Euclidean space]] with fixed axes, called a frame of reference. The point of [[concurrent lines|concurrency]] of the three axes is known as the origin of the particular space.<ref>{{Harvnb|Berkshire|Kibble|2004|p=2}}</ref>
[[Classical mechanics]] is the branch of [[physics]] used to describe the motion of [[macroscopic]] objects.<ref>{{Harvnb|Mayer|Sussman|Wisdom|2001|p=xiii}}</ref> It is the most familiar of the theories of physics. The concepts it covers, such as [[mass]], [[acceleration]], and [[force]], are commonly used and known.<ref>{{Harvnb|Berkshire|Kibble|2004|p=1}}</ref> The subject is based upon a [[three-dimensional space|three-dimensional]] [[Euclidean space]] with fixed axes, called a frame of reference. The point of [[concurrent lines|concurrency]] of the three axes is known as the origin of the particular space.<ref>{{Harvnb|Berkshire|Kibble|2004|p=2}}</ref>


Classical mechanics utilises many [[equation]]s&mdash;as well as other [[mathematics|mathematical]] concepts&mdash;which relate various physical quantities to one another. These include [[differential equations]], [[manifold]]s, [[Lie group]]s, and [[ergodic theory]].<ref>{{Harvnb|Arnold|1989|p=v}}</ref> This page gives a summary of the most important of these.
Classical mechanics utilises many [[equation]]s&mdash;as well as other [[mathematics|mathematical]] concepts&mdash;which relate various physical quantities to one another. These include [[differential equations]], [[manifold]]s, [[Lie group]]s, and [[ergodic theory]].<ref>{{Harvnb|Arnold|1989|p=v}}</ref> This article gives a summary of the most important of these.


This article lists equations from [[Newtonian mechanics]], see [[analytical mechanics]] for the more general formulation of classical mechanics (which includes [[Lagrangian mechanics|Lagrangian]] and [[Hamiltonian mechanics]]).
This article lists equations from [[Newtonian mechanics]], see [[analytical mechanics]] for the more general formulation of classical mechanics (which includes [[Lagrangian mechanics|Lagrangian]] and [[Hamiltonian mechanics]]).
Line 20: Line 21:
| Linear, surface, volumetric mass density
| Linear, surface, volumetric mass density
| ''λ'' or ''μ'' (especially in [[acoustics]], see below) for Linear, ''σ'' for surface, ''ρ'' for volume.
| ''λ'' or ''μ'' (especially in [[acoustics]], see below) for Linear, ''σ'' for surface, ''ρ'' for volume.
| <math> m = \int \lambda \mathrm{d} \ell</math>
| <math> m = \int \lambda \, \mathrm{d} \ell</math>
<math> m = \iint \sigma \mathrm{d} S </math>
<math> m = \iint \sigma \, \mathrm{d} S </math>


<math> m = \iiint \rho \mathrm{d} V \,\!</math>
<math> m = \iiint \rho \, \mathrm{d} V </math>
| kg m<sup>&minus;''n''</sup>, ''n'' = 1, 2, 3
| kg m<sup>&minus;''n''</sup>, ''n'' = 1, 2, 3
| [M][L]<sup>&minus;''n''</sup>
| M L<sup>&minus;''n''</sup>
|-
|-
| Moment of mass{{Anchor|Moment of mass}}<!-- linked from redirect [[Moment of Mass]] --><ref>[http://www.ltcconline.net/greenl/courses/202/multipleIntegration/MassMoments.htm, ''Section: Moments and center of mass'']</ref>
| Moment of mass{{Anchor|Moment of mass}}<!-- linked from redirect [[Moment of Mass]] --><ref>{{cite web| url = http://www.ltcconline.net/greenl/courses/202/multipleIntegration/MassMoments.htm| title = ''Section: Moments and center of mass''}}</ref>
| '''m''' (No common symbol)
| '''m''' (No common symbol)
| Point mass: <br />
| Point mass:
<math> \mathbf{m} = \mathbf{r}m \,\!</math>
<math display="block"> \mathbf{m} = \mathbf{r}m </math>


Discrete masses about an axis <math> x_i \,\!</math>: <br />
Discrete masses about an axis <math> x_i </math>:
<math> \mathbf{m} = \sum_{i=1}^N \mathbf{r}_\mathrm{i} m_i \,\!</math>
<math display="block"> \mathbf{m} = \sum_{i=1}^N \mathbf{r}_i m_i </math>


Continuum of mass about an axis <math> x_i \,\!</math>: <br />
Continuum of mass about an axis <math> x_i </math>:
<math> \mathbf{m} = \int \rho \left ( \mathbf{r} \right ) x_i \mathrm{d} \mathbf{r} \,\!</math>
<math display="block"> \mathbf{m} = \int \rho \left ( \mathbf{r} \right ) x_i \mathrm{d} \mathbf{r} </math>
|| kg m
|| kg m
|| [M][L]
|| M L
|-
|-
| [[Centre of mass]] || '''r'''<sub>com</sub>
| [[Center of mass]] || '''r'''<sub>com</sub>
(Symbols vary)
(Symbols vary)
|| ''i''<sup>th</sup> moment of mass <math> \mathbf{m}_\mathrm{i} = \mathbf{r}_\mathrm{i} m_i \,\!</math>
|| ''i''-th moment of mass <math> \mathbf{m}_i = \mathbf{r}_i m_i </math>


Discrete masses:<br />
Discrete masses:
<math> \mathbf{r}_\mathrm{com} = \frac{1}{M}\sum_i \mathbf{r}_\mathrm{i} m_i = \frac{1}{M}\sum_i \mathbf{m}_\mathrm{i} \,\!</math>
<math display="block"> \mathbf{r}_\mathrm{com} = \frac{1}{M} \sum_i \mathbf{r}_i m_i = \frac{1}{M} \sum_i \mathbf{m}_i </math>


Mass continuum: <br />
Mass continuum:
<math> \mathbf{r}_\mathrm{com} = \frac{1}{M}\int \mathrm{d}\mathbf{m} = \frac{1}{M}\int \mathbf{r} \mathrm{d}m = \frac{1}{M}\int \mathbf{r} \rho \mathrm{d}V \,\!</math>
<math display="block"> \mathbf{r}_\mathrm{com} = \frac{1}{M} \int \mathrm{d}\mathbf{m} = \frac{1}{M} \int \mathbf{r} \, \mathrm{d}m = \frac{1}{M}\int \mathbf{r} \rho \, \mathrm{d}V </math>
|| m
|| m
|| [L]
|| L
|-
|-
| 2-Body reduced mass
| 2-Body reduced mass
|| ''m''<sub>12</sub>, ''μ'' Pair of masses = ''m''<sub>1</sub> and ''m''<sub>2</sub>
|| ''m''<sub>12</sub>, ''μ'' Pair of masses = ''m''<sub>1</sub> and ''m''<sub>2</sub>
|| <math> \mu = \left (m_1m_2 \right )/\left ( m_1 + m_2 \right) \,\!</math>
|| <math> \mu = \frac{m_1 m_2}{m_1 + m_2} </math>
|| kg
|| kg
|| [M]
|| M
|-
|-
| Moment of inertia (MOI)
| Moment of inertia (MOI)
|| ''I''
|| ''I''
|| Discrete Masses:<br />
|| Discrete Masses:
<math> I = \sum_i \mathbf{m}_\mathrm{i} \cdot \mathbf{r}_\mathrm{i} = \sum_i \left | \mathbf{r}_\mathrm{i} \right | ^2 m \,\!</math>
<math display="block"> I = \sum_i \mathbf{m}_i \cdot \mathbf{r}_i = \sum_i \left | \mathbf{r}_i \right | ^2 m </math>


Mass continuum: <br />
Mass continuum:
<math> I = \int \left | \mathbf{r} \right | ^2 \mathrm{d} m = \int \mathbf{r} \cdot \mathrm{d} \mathbf{m} = \int \left | \mathbf{r} \right | ^2 \rho \mathrm{d}V \,\!</math>
<math display="block"> I = \int \left | \mathbf{r} \right | ^2 \mathrm{d} m = \int \mathbf{r} \cdot \mathrm{d} \mathbf{m} = \int \left | \mathbf{r} \right | ^2 \rho \, \mathrm{d}V </math>
|| kg m<sup>2</sup>
|| kg m<sup>2</sup>
|| [M][L]<sup>2</sup>
|| M L<sup>2</sup>
|}
|}


Line 81: Line 82:
! scope="col" style="width:100px;"| Dimension
! scope="col" style="width:100px;"| Dimension
|-
|-
| [[Velocity]] || '''v''' || <math> \mathbf{v} = \mathrm{d} \mathbf{r}/\mathrm{d} t \,\!</math> || m s<sup>−1</sup> || [L][T]<sup>−1</sup>
| [[Velocity]] || '''v''' || <math> \mathbf{v} = \frac{\mathrm{d} \mathbf{r}}{\mathrm{d} t} </math>|| m s<sup>−1</sup> || L T<sup>−1</sup>
|-
|-
| [[Acceleration]] || '''a''' || <math> \mathbf{a} = \mathrm{d} \mathbf{v}/\mathrm{d} t = \mathrm{d}^2 \mathbf{r}/\mathrm{d} t^2 \,\!</math> || m s<sup>−2</sup> || [L][T]<sup>−2</sup>
| [[Acceleration]] || '''a''' || <math> \mathbf{a} = \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t} = \frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d} t^2 } </math>|| m s<sup>−2</sup> || L T<sup>−2</sup>
|-
|-
| [[Jerk (physics)|Jerk]] || '''j''' || <math> \mathbf{j} = \mathrm{d} \mathbf{a}/\mathrm{d} t = \mathrm{d}^3 \mathbf{r}/\mathrm{d} t^3 \,\!</math> || m s<sup>−3</sup> || [L][T]<sup>−3</sup>
| [[Jerk (physics)|Jerk]] || '''j''' || <math> \mathbf{j} = \frac{\mathrm{d} \mathbf{a}}{\mathrm{d} t} = \frac{\mathrm{d}^3 \mathbf{r}}{\mathrm{d} t^3} </math>|| m s<sup>−3</sup> || L T<sup>−3</sup>
|-
|-
| [[Angular velocity]] || '''ω''' || <math> \boldsymbol{\omega} = \mathbf{\hat{n}} \left ( \mathrm{d} \theta /\mathrm{d} t \right ) \,\!</math> || rad s<sup>−1</sup> || [T]<sup>−1</sup>
| [[Jounce]] || '''s''' || <math> \mathbf{s} = \frac{\mathrm{d} \mathbf{j}}{\mathrm{d} t} = \frac{\mathrm{d}^4 \mathbf{r}}{\mathrm{d} t^4}
</math>|| m s<sup>−4</sup> || L T<sup>−4</sup>
|-
|-
| [[Angular acceleration|Angular Acceleration]] || '''α''' || <math> \boldsymbol{\alpha} = \mathrm{d} \boldsymbol{\omega}/\mathrm{d} t = \mathbf{\hat{n}} \left ( \mathrm{d}^2 \theta / \mathrm{d} t^2 \right ) \,\!</math> || rad s<sup>−2</sup> || [T]<sup>−2</sup>
| [[Angular velocity]] || '''ω''' || <math> \boldsymbol{\omega} = \mathbf{\hat{n}} \frac{ \mathrm{d} \theta }{\mathrm{d} t} </math>|| rad s<sup>−1</sup> || T<sup>−1</sup>
|-
| [[Angular acceleration|Angular Acceleration]] || '''α''' || <math> \boldsymbol{\alpha} = \frac{\mathrm{d} \boldsymbol{\omega}}{\mathrm{d} t} = \mathbf{\hat{n}} \frac{\mathrm{d}^2 \theta}{\mathrm{d} t^2} </math>|| rad s<sup>−2</sup> || T<sup>−2</sup>
|-
| [[Angular jerk]] || '''ζ''' || <math> \boldsymbol{\zeta} = \frac{\mathrm{d} \boldsymbol{\alpha}}{\mathrm{d} t} = \mathbf{\hat{n}} \frac{ \mathrm{d}^3 \theta}{\mathrm{d} t^3} </math>|| rad s<sup>−3</sup> || T<sup>−3</sup>
|}
|}


===Derived dynamic quantities===
===Derived dynamic quantities===


[[File:Classical angular momentum.svg|350px|thumb|Angular momenta of a classical object.<br><br>'''Left:''' intrinsic "spin" angular momentum '''S''' is really orbital angular momentum of the object at every point,<br><br>'''right:''' extrinsic orbital angular momentum '''L''' about an axis,<br><br>'''top:''' the [[moment of inertia tensor]] '''I''' and angular velocity '''ω''' ('''L''' is not always parallel to '''ω''')<ref>{{cite book|title=Feynman's Lectures on Physics (volume 2)|author=R.P. Feynman, R.B. Leighton, M. Sands|publisher=Addison-Wesley|year=1964|pages=31–7|isbn=9-780-201-021172}}</ref><br><br>'''bottom:''' momentum '''p''' and it's radial position '''r''' from the axis.<br><br>The total angular momentum (spin + orbital) is '''J'''.]]
[[File:Classical angular momentum.svg|350px|thumb|Angular momenta of a classical object.<br/><br/>'''Left:''' intrinsic "spin" angular momentum '''S''' is really orbital angular momentum of the object at every point,<br/><br/>'''right:''' extrinsic orbital angular momentum '''L''' about an axis,<br/><br/>'''top:''' the [[moment of inertia tensor]] '''I''' and angular velocity '''ω''' ('''L''' is not always parallel to '''ω''')<ref>{{cite book | title=Feynman's Lectures on Physics (volume 2) | author1=R.P. Feynman | author2=R.B. Leighton | author3=M. Sands | publisher=Addison-Wesley | year=1964 | pages=31–7 | isbn=978-0-201-02117-2}}</ref><br/><br/>'''bottom:''' momentum '''p''' and its radial position '''r''' from the axis.<br/><br/>The total angular momentum (spin + orbital) is '''J'''.]]


{| class="wikitable"
{| class="wikitable"
Line 104: Line 110:
! scope="col" style="width:100px;"| Dimension
! scope="col" style="width:100px;"| Dimension
|-
|-
| [[Momentum]] || '''p''' || <math> \mathbf{p}=m\mathbf{v} \,\!</math> || kg m s<sup>−1</sup> || [M][L][T]<sup>−1</sup>
| [[Momentum]] || '''p''' || <math> \mathbf{p} = m\mathbf{v} </math> || kg m s<sup>−1</sup> || M L T<sup>−1</sup>
|-
|-
| [[Force]] || '''F''' || <math> \mathbf{F} = \mathrm{d} \mathbf{p}/\mathrm{d} t \,\!</math>
| [[Force]] || '''F''' || <math> \mathbf{F} = \mathrm{d} \mathbf{p}/\mathrm{d} t </math>
|| N = kg m s<sup>−2</sup> || [M][L][T]<sup>−2</sup>
|| N = kg m s<sup>−2</sup> || M L T<sup>−2</sup>
|-
|-
| [[Impulse (physics)|Impulse]] || '''J''', Δ'''p''', '''I''' || <math> \mathbf{J} = \Delta \mathbf{p} = \int_{t_1}^{t_2} \mathbf{F}\mathrm{d} t \,\!</math> || kg m s<sup>−1</sup> || [M][L][T]<sup>−1</sup>
| [[Impulse (physics)|Impulse]] || '''J''', Δ'''p''', '''I''' || <math> \mathbf{J} = \Delta \mathbf{p} = \int_{t_1}^{t_2} \mathbf{F} \, \mathrm{d} t </math>|| kg m s<sup>−1</sup> || M L T<sup>−1</sup>
|-
|-
| [[Angular momentum]] about a position point '''r'''<sub>0</sub>,
| [[Angular momentum]] about a position point '''r'''<sub>0</sub>,
|| '''L''', '''J''', '''S''' || <math> \mathbf{L} = \left ( \mathbf{r} - \mathbf{r}_0 \right ) \times \mathbf{p} \,\!</math>
|| '''L''', '''J''', '''S''' || <math> \mathbf{L} = \left ( \mathbf{r} - \mathbf{r}_0 \right ) \times \mathbf{p} </math>


Most of the time we can set '''r'''<sub>0</sub> = '''0''' if particles are orbiting about axes intersecting at a common point.
Most of the time we can set '''r'''<sub>0</sub> = '''0''' if particles are orbiting about axes intersecting at a common point.
|| kg m<sup>2</sup> s<sup>−1</sup> || [M][L]<sup>2</sup>[T]<sup>−1</sup>
|| kg m<sup>2</sup> s<sup>−1</sup> || M L<sup>2</sup> T<sup>−1</sup>
|-
|-
| Moment of a force about a position point '''r'''<sub>0</sub>,
| Moment of a force about a position point '''r'''<sub>0</sub>,
[[Torque]]
[[Torque]]
|| '''τ''', '''M''' || <math> \boldsymbol{\tau} = \left ( \mathbf{r} - \mathbf{r}_0 \right ) \times \mathbf{F} = \mathrm{d} \mathbf{L}/\mathrm{d} t \,\!</math> || N m = kg m<sup>2</sup> s<sup>−2</sup> || [M][L]<sup>2</sup>[T]<sup>−2</sup>
|| '''τ''', '''M''' || <math> \boldsymbol{\tau} = \left ( \mathbf{r} - \mathbf{r}_0 \right ) \times \mathbf{F} = \frac{\mathrm{d} \mathbf{L}}{\mathrm{d} t} </math>|| N m = kg m<sup>2</sup> s<sup>−2</sup> || M L<sup>2</sup> T<sup>−2</sup>
|-
|-
| Angular impulse || Δ'''L''' (no common symbol)
| Angular impulse || Δ'''L''' (no common symbol)
|| <math> \Delta \mathbf{L} = \int_{t_1}^{t_2} \boldsymbol{\tau}\mathrm{d} t \,\!</math> || kg m<sup>2</sup> s<sup>−1</sup> || [M][L]<sup>2</sup>[T]<sup>−1</sup>
|| <math> \Delta \mathbf{L} = \int_{t_1}^{t_2} \boldsymbol{\tau} \, \mathrm{d} t </math>|| kg m<sup>2</sup> s<sup>−1</sup> || M L<sup>2</sup> T<sup>−1</sup>
|}
|}


===General energy definitions===
===General energy definitions===


{{Main|Mechanical energy}}
{{Main article|Mechanical energy}}


{| class="wikitable"
{| class="wikitable"
Line 137: Line 143:
! scope="col" style="width:100px;"| Dimension
! scope="col" style="width:100px;"| Dimension
|-
|-
| [[Work (physics)|Mechanical work]] due
| [[Work (physics)|Mechanical work]] due to a Resultant Force
|| ''W'' || <math> W = \int_C \mathbf{F} \cdot \mathrm{d} \mathbf{r} </math> || J = N m = kg m<sup>2</sup> s<sup>−2</sup> || M L<sup>2</sup> T<sup>−2</sup>
to a Resultant Force
|| ''W'' || <math> W = \int_C \mathbf{F} \cdot \mathrm{d} \mathbf{r} \,\!</math> || J = N m = kg m<sup>2</sup> s<sup>−2</sup> || [M][L]<sup>2</sup>[T]<sup>−2</sup>
|-
|-
| Work done ON mechanical
| Work done ON mechanical system, Work done BY
|| ''W''<sub>ON</sub>, ''W''<sub>BY</sub> || <math> \Delta W_\mathrm{ON} = - \Delta W_\mathrm{BY} </math> || J = N m = kg m<sup>2</sup> s<sup>−2</sup> || M L<sup>2</sup> T<sup>−2</sup>
system, Work done BY
|| ''W''<sub>ON</sub>, ''W''<sub>BY</sub> || <math> \Delta W_\mathrm{ON} = - \Delta W_\mathrm{BY} \,\!</math> || J = N m = kg m<sup>2</sup> s<sup>−2</sup> || [M][L]<sup>2</sup>[T]<sup>−2</sup>
|-
|-
| [[Potential energy]]|| ''φ, Φ, U, V, E<sub>p</sub>'' || <math> \Delta W = - \Delta V \,\!</math> || J = N m = kg m<sup>2</sup> s<sup>−2</sup> || [M][L]<sup>2</sup>[T]<sup>−2</sup>
| [[Potential energy]]|| ''φ'', Φ, ''U'', ''V'', ''E<sub>p</sub>'' || <math> \Delta W = - \Delta V </math> || J = N m = kg m<sup>2</sup> s<sup>−2</sup> || M L<sup>2</sup> T<sup>−2</sup>
|-
|-
| Mechanical [[Power (physics)|power]]
| Mechanical [[Power (physics)|power]]
|| ''P'' || <math> P = \mathrm{d}E/\mathrm{d}t \,\!</math> || W = J s<sup>−1</sup> || [M][L]<sup>2</sup>[T]<sup>−3</sup>
|| ''P'' || <math> P = \frac{\mathrm{d}E}{\mathrm{d}t} </math>|| W = J s<sup>−1</sup> || M L<sup>2</sup> T<sup>−3</sup>
|}
|}


Line 157: Line 161:


===Generalized mechanics===
===Generalized mechanics===
{{main|Analytical mechanics|Lagrangian mechanics|Hamiltonian mechanics|}}
{{main article|Analytical mechanics|Lagrangian mechanics|Hamiltonian mechanics|}}


{| class="wikitable"
{| class="wikitable"
Line 174: Line 178:
|-
|-
|[[Generalized velocities]]
|[[Generalized velocities]]
|| <math>\dot{q},\dot{Q} \,\!</math>
|| <math>\dot{q},\dot{Q} </math>
|| <math>\dot{q}\equiv \mathrm{d}q/\mathrm{d}t \,\!</math>
|| <math>\dot{q}\equiv \mathrm{d}q/\mathrm{d}t </math>
|| varies with choice
|| varies with choice
|| varies with choice
|| varies with choice
Line 181: Line 185:
|[[Canonical coordinates|Generalized momenta]]
|[[Canonical coordinates|Generalized momenta]]
|| ''p, P''
|| ''p, P''
||<math> p = \partial L /\partial \dot{q} \,\!</math>
||<math> p = \partial L /\partial \dot{q} </math>
|| varies with choice
|| varies with choice
|| varies with choice
|| varies with choice
|-
|-
| [[Lagrangian]]
| [[Lagrangian mechanics|Lagrangian]]
|| ''L''
|| ''L''
|| <math> L(\mathbf{q},\mathbf{\dot{q}},t) = T(\mathbf{\dot{q}})-V(\mathbf{q},\mathbf{\dot{q}},t) \,\!</math>
|| <math> L(\mathbf{q},\mathbf{\dot{q}},t) = T(\mathbf{\dot{q}}) - V(\mathbf{q},\mathbf{\dot{q}},t) </math>


where <math> \mathbf{q}=\mathbf{q}(t) \,\!</math> and '''p''' = '''p'''(''t'') are vectors of the generalized coords and momenta, as functions of time
where <math> \mathbf{q} = \mathbf{q}(t) </math> and '''p''' = '''p'''(''t'') are vectors of the generalized coords and momenta, as functions of time
|| J
|| J
|| [M][L]<sup>2</sup>[T]<sup>−2</sup>
|| M L<sup>2</sup> T<sup>−2</sup>
|-
|-
| [[Hamiltonian mechanics|Hamiltonian]]
| [[Hamiltonian mechanics|Hamiltonian]]
|| ''H''
|| ''H''
|| <math> H(\mathbf{p},\mathbf{q},t) = \mathbf{p}\cdot\mathbf{\dot{q}} - L(\mathbf{q},\mathbf{\dot{q}},t) \,\!</math>
|| <math> H(\mathbf{p},\mathbf{q},t) = \mathbf{p}\cdot\mathbf{\dot{q}} - L(\mathbf{q},\mathbf{\dot{q}},t) </math>
|| J
|| J
|| [M][L]<sup>2</sup>[T]<sup>−2</sup>
|| M L<sup>2</sup> T<sup>−2</sup>
|-
|-
| [[Action (physics)|Action]], Hamilton's principal function
| [[Action (physics)|Action]], Hamilton's principal function
|| ''S'', <math> \scriptstyle{\mathcal{S}} \,\!</math>
|| ''S'', <math> \scriptstyle{\mathcal{S}} </math>
|| <math> \mathcal{S} = \int_{t_1}^{t_2} L(\mathbf{q},\mathbf{\dot{q}},t) \mathrm{d}t \,\!</math>
|| <math> \mathcal{S} = \int_{t_1}^{t_2} L(\mathbf{q},\mathbf{\dot{q}},t) \mathrm{d}t </math>
|| J s
|| J s
|| [M][L]<sup>2</sup>[T]<sup>−1</sup>
|| M L<sup>2</sup> T<sup>−1</sup>
|}
|}


Line 210: Line 214:
In the following rotational definitions, the angle can be any angle about the specified axis of rotation. It is customary to use ''θ'', but this does not have to be the polar angle used in polar coordinate systems. The unit axial vector
In the following rotational definitions, the angle can be any angle about the specified axis of rotation. It is customary to use ''θ'', but this does not have to be the polar angle used in polar coordinate systems. The unit axial vector


:<math>\bold{\hat{n}} = \bold{\hat{e}}_r\times\bold{\hat{e}}_\theta \,\!</math>
<math display="block">\mathbf{\hat{n}} = \mathbf{\hat{e}}_r\times\mathbf{\hat{e}}_\theta </math>


defines the axis of rotation, <math> \scriptstyle \bold{\hat{e}}_r \,\!</math> = unit vector in direction of '''r''', <math> \scriptstyle \bold{\hat{e}}_\theta \,\!</math> = unit vector tangential to the angle.
defines the axis of rotation, <math> \scriptstyle \mathbf{\hat{e}}_r </math> = unit vector in direction of {{math|'''r'''}}, <math> \scriptstyle \mathbf{\hat{e}}_\theta </math> = unit vector tangential to the angle.


{| class="wikitable"
{| class="wikitable"
Line 222: Line 226:
![[Velocity]]
![[Velocity]]
|Average:
|Average:
:<math>\mathbf{v}_{\mathrm{average}} = {\Delta \mathbf{r} \over \Delta t}</math>
<math display="block">\mathbf{v}_{\mathrm{average}} = {\Delta \mathbf{r} \over \Delta t}</math>
Instantaneous:
Instantaneous:
:<math>\mathbf{v} = {d\mathbf{r} \over dt}</math>
|[[Angular velocity]]
:<math> \boldsymbol{\omega} = \bold{\hat{n}}\frac{{\rm d} \theta}{{\rm d} t}\,\!</math>


<math display="block">\mathbf{v} = {d\mathbf{r} \over dt}</math>
Rotating [[rigid body]]:
|[[Angular velocity]]<math display="block"> \boldsymbol{\omega} = \mathbf{\hat{n}}\frac{{\rm d} \theta}{{\rm d} t}</math>Rotating [[rigid body]]:<math display="block"> \mathbf{v} = \boldsymbol{\omega} \times \mathbf{r} </math>

:<math> \mathbf{v} = \boldsymbol{\omega} \times \mathbf{r} \,\!</math>
|- valign="top"
|- valign="top"
![[Acceleration]]
![[Acceleration]]
|Average:
|Average:
:<math>\mathbf{a}_{\mathrm{average}} = \frac{\Delta\mathbf{v}}{\Delta t} </math>
<math display="block">\mathbf{a}_{\mathrm{average}} = \frac{\Delta\mathbf{v}}{\Delta t} </math>


Instantaneous:
Instantaneous:


:<math>\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{r}}{dt^2} </math>
<math display="block">\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{r}}{dt^2} </math>


|[[Angular acceleration]]
|[[Angular acceleration]]


:<math>\boldsymbol{\alpha} = \frac{{\rm d} \boldsymbol{\omega}}{{\rm d} t} = \bold{\hat{n}}\frac{{\rm d}^2 \theta}{{\rm d} t^2} \,\!</math>
<math display="block">\boldsymbol{\alpha} = \frac{{\rm d} \boldsymbol{\omega}}{{\rm d} t} = \mathbf{\hat{n}}\frac{{\rm d}^2 \theta}{{\rm d} t^2} </math>


Rotating rigid body:
Rotating rigid body:


:<math> \mathbf{a} = \boldsymbol{\alpha} \times \mathbf{r} + \boldsymbol{\omega} \times \mathbf{v} \,\!</math>
<math display="block"> \mathbf{a} = \boldsymbol{\alpha} \times \mathbf{r} + \boldsymbol{\omega} \times \mathbf{v} </math>


|- valign="top"
|- valign="top"
![[Jerk (physics)|Jerk]]
![[Jerk (physics)|Jerk]]
|Average:
|Average:
:<math>\mathbf{j}_{\mathrm{average}} = \frac{\Delta\mathbf{a}}{\Delta t} </math>
<math display="block">\mathbf{j}_{\mathrm{average}} = \frac{\Delta\mathbf{a}}{\Delta t} </math>


Instantaneous:
Instantaneous:


:<math>\mathbf{j} = \frac{d\mathbf{a}}{dt} = \frac{d^2\mathbf{v}}{dt^2} = \frac{d^3\mathbf{r}}{dt^3} </math>
<math display="block">\mathbf{j} = \frac{d\mathbf{a}}{dt} = \frac{d^2\mathbf{v}}{dt^2} = \frac{d^3\mathbf{r}}{dt^3} </math>
|[[Angular jerk]]
|[[Angular jerk]]


:<math>\boldsymbol{\zeta} = \frac{{\rm d} \boldsymbol{\alpha}}{{\rm d} t} = \bold{\hat{n}}\frac{{\rm d}^2 \omega}{{\rm d} t^2} = \bold{\hat{n}}\frac{{\rm d}^3 \theta}{{\rm d} t^3} \,\!</math>
<math display="block">\boldsymbol{\zeta} = \frac{{\rm d} \boldsymbol{\alpha}}{{\rm d} t} = \mathbf{\hat{n}}\frac{{\rm d}^2 \omega}{{\rm d} t^2} = \mathbf{\hat{n}}\frac{{\rm d}^3 \theta}{{\rm d} t^3} </math>


Rotating rigid body:
Rotating rigid body:


:<math> \mathbf{j} = \boldsymbol{\zeta} \times \mathbf{r} + \boldsymbol{\alpha} \times \mathbf{a} \,\!</math>
<math display="block"> \mathbf{j} = \boldsymbol{\zeta} \times \mathbf{r} + \boldsymbol{\alpha} \times \mathbf{a} </math>
|}
|}


Line 276: Line 276:
|Momentum is the "amount of translation"
|Momentum is the "amount of translation"


: <math>\mathbf{p} = m\mathbf{v}</math>
<math display="block">\mathbf{p} = m\mathbf{v}</math>


For a rotating rigid body:
For a rotating rigid body:


:<math> \mathbf{p} = \boldsymbol{\omega} \times \mathbf{m} \,\!</math>
<math display="block"> \mathbf{p} = \boldsymbol{\omega} \times \mathbf{m} </math>
|[[Angular momentum]]
|[[Angular momentum]]


Angular momentum is the "amount of rotation":
Angular momentum is the "amount of rotation":


:<math> \mathbf{L} = \mathbf{r} \times \mathbf{p} = \mathbf{I} \cdot \boldsymbol{\omega} </math>
<math display="block"> \mathbf{L} = \mathbf{r} \times \mathbf{p} = \mathbf{I} \cdot \boldsymbol{\omega} </math>


and the cross-product is a [[pseudovector]] i.e. if '''r''' and '''p''' are reversed in direction (negative), '''L''' is not.
and the cross-product is a [[pseudovector]] i.e. if '''r''' and '''p''' are reversed in direction (negative), '''L''' is not.
Line 294: Line 294:
|Resultant force acts on a system at the center of mass, equal to the rate of change of momentum:
|Resultant force acts on a system at the center of mass, equal to the rate of change of momentum:


:<math> \begin{align} \mathbf{F} & = \frac{d\mathbf{p}}{dt} = \frac{d(m\mathbf{v})}{dt} \\
<math display="block"> \begin{align} \mathbf{F} & = \frac{d\mathbf{p}}{dt} = \frac{d(m\mathbf{v})}{dt} \\
& = m\mathbf{a} + \mathbf{v}\frac{{\rm d}m}{{\rm d}t} \\
& = m\mathbf{a} + \mathbf{v}\frac{{\rm d}m}{{\rm d}t} \\
\end{align} \,\!</math>
\end{align} </math>


For a number of particles, the equation of motion for one particle ''i'' is:<ref>"Relativity, J.R. Forshaw 2009"</ref>
For a number of particles, the equation of motion for one particle ''i'' is:<ref>"Relativity, J.R. Forshaw 2009"</ref>


:<math> \frac{\mathrm{d}\mathbf{p}_i}{\mathrm{d}t} = \mathbf{F}_{E} + \sum_{i \neq j} \mathbf{F}_{ij} \,\!</math>
<math display="block"> \frac{\mathrm{d}\mathbf{p}_i}{\mathrm{d}t} = \mathbf{F}_{E} + \sum_{i \neq j} \mathbf{F}_{ij} </math>


where '''p'''<sub>''i''</sub> = momentum of particle ''i'', '''F'''<sub>''ij''</sub> = force '''''on''''' particle ''i'' '''''by''''' particle ''j'', and '''F'''<sub>''E''</sub> = resultant external force (due to any agent not part of system). Particle ''i'' does not exert a force on itself.
where '''p'''<sub>''i''</sub> = momentum of particle ''i'', '''F'''<sub>''ij''</sub> = force '''''on''''' particle ''i'' '''''by''''' particle ''j'', and '''F'''<sub>''E''</sub> = resultant external force (due to any agent not part of system). Particle ''i'' does not exert a force on itself.
Line 307: Line 307:
Torque '''τ''' is also called moment of a force, because it is the rotational analogue to force:<ref>"Mechanics, D. Kleppner 2010"</ref>
Torque '''τ''' is also called moment of a force, because it is the rotational analogue to force:<ref>"Mechanics, D. Kleppner 2010"</ref>


:<math> \boldsymbol{\tau} = \frac{{\rm d}\mathbf{L}}{{\rm d}t} = \mathbf{r}\times\mathbf{F} = \frac{{\rm d}(\mathbf{I} \cdot \boldsymbol{\omega})}{{\rm d}t} \,\!</math>
<math display="block"> \boldsymbol{\tau} = \frac{{\rm d}\mathbf{L}}{{\rm d}t} = \mathbf{r}\times\mathbf{F} = \frac{{\rm d}(\mathbf{I} \cdot \boldsymbol{\omega})}{{\rm d}t} </math>


For rigid bodies, Newton's 2nd law for rotation takes the same form as for translation:
For rigid bodies, Newton's 2nd law for rotation takes the same form as for translation:


:<math> \begin{align}
<math display="block"> \begin{align}
\boldsymbol{\tau} & = \frac{{\rm d}\bold{L}}{{\rm d}t} = \frac{{\rm d}(\bold{I}\cdot\boldsymbol{\omega})}{{\rm d}t} \\
\boldsymbol{\tau} & = \frac{{\rm d}\mathbf{L}}{{\rm d}t} = \frac{{\rm d}(\mathbf{I}\cdot\boldsymbol{\omega})}{{\rm d}t} \\
& = \frac{{\rm d}\bold{I}}{{\rm d}t}\cdot\boldsymbol{\omega} + \bold{I}\cdot\boldsymbol{\alpha} \\
& = \frac{{\rm d}\mathbf{I}}{{\rm d}t}\cdot\boldsymbol{\omega} + \mathbf{I}\cdot\boldsymbol{\alpha} \\
\end{align} \,\!</math>
\end{align} </math>


Likewise, for a number of particles, the equation of motion for one particle ''i'' is:<ref>"Relativity, J.R. Forshaw 2009"</ref>
Likewise, for a number of particles, the equation of motion for one particle ''i'' is:<ref>"Relativity, J.R. Forshaw 2009"</ref>


:<math> \frac{\mathrm{d}\mathbf{L}_i}{\mathrm{d}t} = \boldsymbol{\tau}_E + \sum_{i \neq j} \boldsymbol{\tau}_{ij} \,\!</math>
<math display="block"> \frac{\mathrm{d}\mathbf{L}_i}{\mathrm{d}t} = \boldsymbol{\tau}_E + \sum_{i \neq j} \boldsymbol{\tau}_{ij} </math>
|- valign="top"|-valign="top"
|- valign="top"|-valign="top"
![[Yank (physics)|Yank]]
![[Yank (physics)|Yank]]
|Yank is rate of change of force:
|Yank is rate of change of force:


:<math> \begin{align} \mathbf{Y} & = \frac{d\mathbf{F}}{dt} = \frac{d^2\mathbf{p}}{dt^2} = \frac{d^2(m\mathbf{v})}{dt^2} \\
<math display="block" display="block"> \begin{align} \mathbf{Y} & = \frac{d\mathbf{F}}{dt} = \frac{d^2\mathbf{p}}{dt^2} = \frac{d^2(m\mathbf{v})}{dt^2} \\[1ex]
& = m\mathbf{j} + \mathbf{2a}\frac{{\rm d}m}{{\rm d}t} + \mathbf{v}\frac{{\rm d^2}m}{{\rm d}t^2} \\
& = m\mathbf{j} + \mathbf{2a}\frac{{\rm d}m}{{\rm d}t} + \mathbf{v}\frac{{\rm d^2}m}{{\rm d}t^2}
\end{align} \,\!</math>
\end{align} </math>


For constant mass, it becomes;
For constant mass, it becomes;
:<math>\mathbf{Y} = m\mathbf{j}</math>
<math display="block">\mathbf{Y} = m\mathbf{j}</math>
|[[Rotatum]]
|[[Rotatum]]


Rotatum '''Ρ''' is also called moment of a Yank, because it is the rotational analogue to yank:
Rotatum '''Ρ''' is also called moment of a Yank, because it is the rotational analogue to yank:


:<math> \boldsymbol{\Rho} = \frac{{\rm d}\mathbf{\tau}}{{\rm d}t} = \mathbf{r}\times\mathbf{Y} = \frac{{\rm d}(\mathbf{I} \cdot \boldsymbol{\alpha})}{{\rm d}t} \,\!</math>
<math display="block"> \boldsymbol{\Rho} = \frac{{\rm d}\boldsymbol{\tau}}{{\rm d}t} = \mathbf{r}\times\mathbf{Y} = \frac{{\rm d}(\mathbf{I} \cdot \boldsymbol{\alpha})}{{\rm d}t} </math>
|- valign="top"|-valign="top"
|- valign="top"|-valign="top"
![[Impulse (physics)|Impulse]]
![[Impulse (physics)|Impulse]]
Line 339: Line 339:
|Impulse is the change in momentum:
|Impulse is the change in momentum:


:<math> \Delta \mathbf{p} = \int \mathbf{F} dt </math>
<math display="block"> \Delta \mathbf{p} = \int \mathbf{F} \, dt </math>


For constant force '''F''':
For constant force '''F''':


:<math> \Delta \mathbf{p} = \mathbf{F} \Delta t </math>
<math display="block"> \Delta \mathbf{p} = \mathbf{F} \Delta t </math>
|Angular impulse is the change in angular momentum:
|Twirl/angular impulse is the change in angular momentum:


:<math> \Delta \mathbf{L} = \int \boldsymbol{\tau} dt </math>
<math display="block"> \Delta \mathbf{L} = \int \boldsymbol{\tau} \, dt </math>


For constant torque '''τ''':
For constant torque '''τ''':


:<math> \Delta \mathbf{L} = \boldsymbol{\tau} \Delta t </math>
<math display="block"> \Delta \mathbf{L} = \boldsymbol{\tau} \Delta t </math>
|}
|}


Line 357: Line 357:
The precession angular speed of a [[spinning top]] is given by:
The precession angular speed of a [[spinning top]] is given by:


:<math> \boldsymbol{\Omega} = \frac{wr}{I\boldsymbol{\omega}} </math>
<math display="block"> \boldsymbol{\Omega} = \frac{wr}{I\boldsymbol{\omega}} </math>


where ''w'' is the weight of the spinning flywheel.
where ''w'' is the weight of the spinning flywheel.
Line 365: Line 365:
The mechanical work done by an external agent on a system is equal to the change in kinetic energy of the system:
The mechanical work done by an external agent on a system is equal to the change in kinetic energy of the system:


;General [[work-energy theorem]] (translation and rotation)
=== General [[work-energy theorem]] (translation and rotation) ===


The work done ''W'' by an external agent which exerts a force '''F''' (at '''r''') and torque '''τ''' on an object along a curved path ''C'' is:
The work done ''W'' by an external agent which exerts a force '''F''' (at '''r''') and torque '''τ''' on an object along a curved path ''C'' is:


:<math> W = \Delta T = \int_C \left ( \mathbf{F} \cdot \mathrm{d} \mathbf{r} + \boldsymbol{\tau} \cdot \mathbf{n} {\mathrm{d} \theta} \right ) \,\!</math>
<math display="block"> W = \Delta T = \int_C \left ( \mathbf{F} \cdot \mathrm{d} \mathbf{r} + \boldsymbol{\tau} \cdot \mathbf{n} \, {\mathrm{d} \theta} \right ) </math>


where θ is the angle of rotation about an axis defined by a [[unit vector]] '''n'''.
where θ is the angle of rotation about an axis defined by a [[unit vector]] '''n'''.


;[[Kinetic energy]]
=== Kinetic energy ===
The change in [[kinetic energy]] for an object initially traveling at speed <math>v_0</math> and later at speed <math>v</math> is:
<math display="block"> \Delta E_k = W = \frac{1}{2} m(v^2 - {v_0}^2) </math>


=== Elastic potential energy ===
:<math> \Delta E_k = W = \frac{1}{2} m(v^2 - {v_0}^2) </math>


;[[Elastic potential energy]]
For a stretched spring fixed at one end obeying [[Hooke's law]], the [[elastic potential energy]] is


<math display="block"> \Delta E_p = \frac{1}{2} k(r_2-r_1)^2 </math>
For a stretched spring fixed at one end obeying [[Hooke's law]]:

:<math> \Delta E_p = \frac{1}{2} k(r_2-r_1)^2 \,\!</math>


where ''r''<sub>2</sub> and ''r''<sub>1</sub> are collinear coordinates of the free end of the spring, in the direction of the extension/compression, and k is the spring constant.
where ''r''<sub>2</sub> and ''r''<sub>1</sub> are collinear coordinates of the free end of the spring, in the direction of the extension/compression, and k is the spring constant.
Line 387: Line 387:
==Euler's equations for rigid body dynamics==
==Euler's equations for rigid body dynamics==


{{main|Euler's equations (rigid body dynamics)}}
{{main article|Euler's equations (rigid body dynamics)}}


[[Euler]] also worked out analogous laws of motion to those of Newton, see [[Euler's laws of motion]]. These extend the scope of Newton's laws to rigid bodies, but are essentially the same as above. A new equation Euler formulated is:<ref>"Relativity, J.R. Forshaw 2009"</ref>
[[Euler]] also worked out analogous laws of motion to those of Newton, see [[Euler's laws of motion]]. These extend the scope of Newton's laws to rigid bodies, but are essentially the same as above. A new equation Euler formulated is:<ref>"Relativity, J.R. Forshaw 2009"</ref>


:<math> \mathbf{I} \cdot \boldsymbol{\alpha} + \boldsymbol{\omega} \times \left ( \mathbf{I} \cdot \boldsymbol{\omega} \right ) = \boldsymbol{\tau} \,\!</math>
<math display="block"> \mathbf{I} \cdot \boldsymbol{\alpha} + \boldsymbol{\omega} \times \left ( \mathbf{I} \cdot \boldsymbol{\omega} \right ) = \boldsymbol{\tau} </math>


where '''I''' is the [[moment of inertia]] [[tensor]].
where '''I''' is the [[moment of inertia]] [[tensor]].
Line 401: Line 401:
The previous equations for planar motion can be used here: corollaries of momentum, angular momentum etc. can immediately follow by applying the above definitions. For any object moving in any path in a plane,
The previous equations for planar motion can be used here: corollaries of momentum, angular momentum etc. can immediately follow by applying the above definitions. For any object moving in any path in a plane,


:<math> \mathbf{r}= \bold{r}(t) = r\bold{\hat{e}}_r \,\!</math>
<math display="block"> \mathbf{r} = \mathbf{r}(t) = r\hat\mathbf r </math>


the following general results apply to the particle.
the following general results apply to the particle.
Line 411: Line 411:
|-
|-
| Position
| Position
<math> \mathbf{r} =\bold{r}\left ( r,\theta, t \right ) = r \bold{\hat{e}}_r </math>
<math display="block"> \mathbf{r} =\mathbf{r}\left ( r,\theta, t \right ) = r \hat\mathbf r </math>
|
|
|-
|-
| Velocity
| Velocity


:<math> \mathbf{v} = \bold{\hat{e}}_r \frac{\mathrm{d} r}{\mathrm{d}t} + r \omega \bold{\hat{e}}_\theta </math>
<math display="block"> \mathbf{v} = \hat\mathbf r \frac{\mathrm{d} r}{\mathrm{d}t} + r \omega \hat\mathbf\theta </math>
| Momentum
| Momentum
:<math> \mathbf{p} = m \left(\bold{\hat{e}}_r \frac{\mathrm{d} r}{\mathrm{d}t} + r \omega \bold{\hat{e}}_\theta \right) </math>
<math display="block"> \mathbf{p} = m \left(\hat\mathbf r \frac{\mathrm{d} r}{\mathrm{d}t} + r \omega \hat\mathbf\theta \right) </math>


Angular momenta
Angular momenta
<math>\mathbf{L} = m \bold{r}\times \left(\bold{\hat{e}}_r \frac{\mathrm{d} r}{\mathrm{d}t} + r \omega \bold{\hat{e}}_\theta \right) </math>
<math display="block">\mathbf{L} = m \mathbf{r}\times \left(\hat\mathbf{r} \frac{\mathrm{d} r}{\mathrm{d}t} + r\omega\hat\mathbf\theta\right) </math>
|-
|-
| Acceleration
| Acceleration


:<math> \mathbf{a} =\left ( \frac{\mathrm{d}^2 r}{\mathrm{d}t^2} - r\omega^2\right )\bold{\hat{e}}_r + \left ( r \alpha + 2 \omega \frac{\mathrm{d}r}{{\rm d}t} \right )\bold{\hat{e}}_\theta </math>
<math display="block"> \mathbf{a} =\left ( \frac{\mathrm{d}^2 r}{\mathrm{d}t^2} - r\omega^2\right )\hat\mathbf r + \left ( r \alpha + 2 \omega \frac{\mathrm{d}r}{{\rm d}t} \right )\hat\mathbf\theta </math>
| The [[centripetal force]] is
| The [[centripetal force]] is


:<math> \mathbf{F}_\bot = - m \omega^2 R \bold{\hat{e}}_r= - \omega^2 \mathbf{m} \,\!</math>
<math display="block"> \mathbf{F}_\bot = - m \omega^2 R \hat\mathbf r= - \omega^2 \mathbf{m} </math>


where again '''m''' is the mass moment, and the [[coriolis force]] is
where again '''m''' is the mass moment, and the [[Coriolis force]] is


:<math> \mathbf{F}_c = 2\omega m \frac{{\rm d}r}{{\rm d}t} \bold{\hat{e}}_\theta = 2\omega m v \bold{\hat{e}}_\theta \,\!</math>
<math display="block"> \mathbf{F}_c = 2\omega m \frac{{\rm d}r}{{\rm d}t} \hat\mathbf\theta = 2\omega m v \hat\mathbf\theta </math>


The [[Coriolis effect|Coriolis acceleration and force]] can also be written:
The [[Coriolis effect|Coriolis acceleration and force]] can also be written:


:<math>\mathbf{F}_c = m\mathbf{a}_c = -2 m \boldsymbol{ \omega \times v}</math>
<math display="block">\mathbf{F}_c = m\mathbf{a}_c = -2 m \boldsymbol{ \omega \times v}</math>
|}
|}


=== Central force motion ===
=== Central force motion ===


For a massive body moving in a [[central potential]] due to another object, which depends only on the radial separation between the centres of masses of the two objects, the equation of motion is:
For a massive body moving in a [[central potential]] due to another object, which depends only on the radial separation between the centers of masses of the two objects, the equation of motion is:


: <math>\frac{d^2}{d\theta^2}\left(\frac{1}{\mathbf{r}}\right) + \frac{1}{\mathbf{r}} = -\frac{\mu\mathbf{r}^2}{\mathbf{l}^2}\mathbf{F}(\mathbf{r})</math>
<math display="block">\frac{d^2}{d\theta^2}\left(\frac{1}{\mathbf{r}}\right) + \frac{1}{\mathbf{r}} = -\frac{\mu\mathbf{r}^2}{\mathbf{l}^2}\mathbf{F}(\mathbf{r})</math>


== Equations of motion (constant acceleration) ==
== Equations of motion (constant acceleration) ==
Line 453: Line 453:
!Angular motion
!Angular motion
|-
|-
|<math>v = v_0+at \,</math>
|<math>\mathbf{v-v_0}=\mathbf at </math>
|<math> \omega _1 = \omega _0 + \alpha t \,</math>
|<math> \boldsymbol{\omega - \omega_0} = \boldsymbol\alpha t </math>
|-
|-
|<math>s = \frac {1} {2}(v_0+v) t </math>
|<math>\mathbf{x - x_0} = \tfrac{1}{2}(\mathbf{v_0+v})t </math>
|<math> \theta = \frac{1}{2}(\omega _0 + \omega _1)t</math>
|<math> \boldsymbol{\theta - \theta_0} = \tfrac{1}{2}(\boldsymbol{\omega_0 + \omega})t</math>
|-
|-
|<math>s = v_0 t + \frac {1} {2} a t^2 </math>
|<math>\mathbf{x - x_0} = \mathbf v_0t+\tfrac{1}{2}\mathbf at^2 </math>
|<math> \theta = \omega _0 t + \frac{1}{2} \alpha t^2</math>
|<math> \boldsymbol{\theta - \theta_0} = \boldsymbol\omega _0 t + \tfrac{1}{2} \boldsymbol\alpha t^2</math>
|-
|-
|<math>v^2 = v_0^2 + 2 a s \,</math>
|<math> \mathbf x_{n^{th}} = \mathbf v_0+\mathbf a(n-\tfrac{1}{2})</math>
|<math> \omega _1^2 = \omega _0^2 + 2\alpha\theta</math>
|<math> \boldsymbol\theta_{n^{th}} =\boldsymbol\omega_0+\boldsymbol\alpha(n-\tfrac{1}{2})</math>
|-
|-
|<math> s = v t - \frac{1}{2} a t^2</math>
|<math>v^2 - v_0^2 = 2\mathbf{a(x-x_0)} </math>
|<math> \theta = \omega _1 t - \frac{1}{2} \alpha t^2</math>
|<math> \omega^2 - \omega_0^2 = 2\boldsymbol{\alpha(\theta-\theta_0)}</math>
|}
|}


Line 487: Line 487:
'''V''' = Constant relative velocity between two inertial frames F and F'.<br />
'''V''' = Constant relative velocity between two inertial frames F and F'.<br />
'''A''' = (Variable) relative acceleration between two accelerating frames F and F'.<br />
'''A''' = (Variable) relative acceleration between two accelerating frames F and F'.<br />
|Relative position<br /><math> \mathbf{r}' = \mathbf{r} + \mathbf{V}t \,\!</math><br/>
|Relative position
<math display="block"> \mathbf{r}' = \mathbf{r} + \mathbf{V}t </math>

Relative velocity<br /><math> \mathbf{v}' = \mathbf{v} + \mathbf{V} \,\!</math><br />
Relative velocity
Equivalent accelerations<br /><math> \mathbf{a}' = \mathbf{a} </math>
|Relative accelerations<br /><math> \mathbf{a}' = \mathbf{a} + \mathbf{A} </math><br />
<math display="block"> \mathbf{v}' = \mathbf{v} + \mathbf{V} </math>

Apparent/fictitious forces<br /><math> \mathbf{F}' = \mathbf{F} - \mathbf{F}_\mathrm{app} </math><br />
Equivalent accelerations
<math display="block"> \mathbf{a}' = \mathbf{a} </math>
|Relative accelerations
<math display="block"> \mathbf{a}' = \mathbf{a} + \mathbf{A} </math>

Apparent/fictitious forces
<math display="block"> \mathbf{F}' = \mathbf{F} - \mathbf{F}_\mathrm{app} </math>
|-
|-
|rowspan="2" |'''Rotation'''
|rowspan="2" |'''Rotation'''
Line 498: Line 506:
'''Λ''' = (Variable) relative angular acceleration between two accelerating frames F and F'.
'''Λ''' = (Variable) relative angular acceleration between two accelerating frames F and F'.


|Relative angular position<br /><math> \theta' = \theta + \Omega t \,\!</math><br/>
|Relative angular position
<math display="block"> \theta' = \theta + \Omega t </math>
Relative velocity<br /><math> \boldsymbol{\omega}' = \boldsymbol{\omega} + \boldsymbol{\Omega} \,\!</math><br />
Relative velocity
<math display="block"> \boldsymbol{\omega}' = \boldsymbol{\omega} + \boldsymbol{\Omega} </math>

Equivalent accelerations<br /><math> \boldsymbol{\alpha}' = \boldsymbol{\alpha} </math><br />
Equivalent accelerations
| Relative accelerations<br /><math> \boldsymbol{\alpha}' = \boldsymbol{\alpha} + \boldsymbol{\Lambda} </math><br />
Apparent/fictitious torques<br /><math> \boldsymbol{\tau}' = \boldsymbol{\tau} - \boldsymbol{\tau}_\mathrm{app} </math><br />
<math display="block"> \boldsymbol{\alpha}' = \boldsymbol{\alpha} </math>

| Relative accelerations
<math display="block"> \boldsymbol{\alpha}' = \boldsymbol{\alpha} + \boldsymbol{\Lambda} </math>

Apparent/fictitious torques
<math display="block"> \boldsymbol{\tau}' = \boldsymbol{\tau} - \boldsymbol{\tau}_\mathrm{app} </math>
|-
|-
|colspan="2"| Transformation of any vector '''T''' to a rotating frame<br />
|colspan="2"| Transformation of any vector '''T''' to a rotating frame
<math> \frac{{\rm d}\mathbf{T}'}{{\rm d}t} = \frac{{\rm d}\mathbf{T}}{{\rm d}t} - \boldsymbol{\Omega} \times \mathbf{T} </math>
<math display="block"> \frac{{\rm d}\mathbf{T}'}{{\rm d}t} = \frac{{\rm d}\mathbf{T}}{{\rm d}t} - \boldsymbol{\Omega} \times \mathbf{T} </math>
|}
|}


Line 521: Line 537:
|-
|-
! scope="row" | SHM
! scope="row" | SHM
| <div class="plainlist">
| {{plainlist}}
* ''x'' = Transverse displacement
* ''x'' = Transverse displacement
* ''θ'' = Angular displacement
* ''θ'' = Angular displacement
* ''A'' = Transverse amplitude
* ''A'' = Transverse amplitude
* Θ = Angular amplitude
* Θ = Angular amplitude
{{endplainlist}}
</div>
| <math>\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = - \omega^2 x \,\!</math>
| <math display="block">\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = - \omega^2 x </math>


Solution:<br />
Solution:
<math> x = A \sin\left ( \omega t + \phi \right ) \,\!</math>
<math display="block"> x = A \sin\left ( \omega t + \phi \right ) </math>
| <math>\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = - \omega^2 \theta \,\!</math>
| <math display="block">\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = - \omega^2 \theta </math>


Solution:<br />
Solution:
<math> \theta = \Theta \sin\left ( \omega t + \phi \right ) \,\!</math>
<math display="block"> \theta = \Theta \sin\left ( \omega t + \phi \right ) </math>
|-
|-
! scope="row" | Unforced DHM
! scope="row" | Unforced DHM
| <div class="plainlist">
| {{plainlist}}
* ''b'' = damping constant
* ''b'' = damping constant
* ''κ'' = torsion constant
* ''κ'' = torsion constant
{{endplainlist}}
</div>
| <math>\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + b \frac{\mathrm{d}x}{\mathrm{d}t} + \omega^2 x = 0 \,\!</math>
| <math display="block">\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + b \frac{\mathrm{d}x}{\mathrm{d}t} + \omega^2 x = 0 </math>


Solution (see below for ''ω'''):<br />
Solution (see below for ''ω'''):
<math>x=Ae^{-bt/2m}\cos\left ( \omega' \right )\,\!</math>
<math display="block">x=Ae^{-bt/2m}\cos\left ( \omega' \right )</math>


Resonant frequency:<br />
Resonant frequency:
<math>\omega_\mathrm{res} = \sqrt{\omega^2 - \left ( \frac{b}{4m} \right )^2 } \,\!</math>
<math display="block">\omega_\mathrm{res} = \sqrt{\omega^2 - \left ( \frac{b}{4m} \right )^2 } </math>


Damping rate:<br>
Damping rate:
<math>\gamma = b/m \,\!</math>
<math display="block">\gamma = b/m </math>


Expected lifetime of excitation:<br />
Expected lifetime of excitation:
<math>\tau = 1/\gamma\,\!</math>
<math display="block">\tau = 1/\gamma</math>
| <math>\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} + b \frac{\mathrm{d}\theta}{\mathrm{d}t} + \omega^2 \theta = 0 \,\!</math>
| <math display="block">\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} + b \frac{\mathrm{d}\theta}{\mathrm{d}t} + \omega^2 \theta = 0 </math>


Solution:<br />
Solution:
<math>\theta=\Theta e^{-\kappa t/2m}\cos\left ( \omega \right )\,\!</math>
<math display="block">\theta=\Theta e^{-\kappa t/2m}\cos\left ( \omega \right )</math>


Resonant frequency:<br />
Resonant frequency:
<math>\omega_\mathrm{res} = \sqrt{\omega^2 - \left ( \frac{\kappa}{4m} \right )^2 } \,\!</math>
<math display="block">\omega_\mathrm{res} = \sqrt{\omega^2 - \left ( \frac{\kappa}{4m} \right )^2 } </math>


Damping rate:<br>
Damping rate:
<math>\gamma = \kappa/m \,\!</math>
<math display="block">\gamma = \kappa/m </math>


Expected lifetime of excitation:<br />
Expected lifetime of excitation:
<math>\tau = 1/\gamma\,\!</math>
<math display="block">\tau = 1/\gamma</math>
|}
|}
{| class="wikitable"
{| class="wikitable"
Line 576: Line 592:
|-
|-
! scope="row" | Linear undamped unforced SHO
! scope="row" | Linear undamped unforced SHO
| <div class="plainlist">
| {{plainlist}}
* ''k'' = spring constant
* ''k'' = spring constant
* ''m'' = mass of oscillating bob
* ''m'' = mass of oscillating bob
{{endplainlist}}
</div>
| <math>\omega = \sqrt{\frac{k}{m}} \,\!</math>
| <math>\omega = \sqrt{\frac{k}{m}} </math>
|-
|-
! scope="row" | Linear unforced DHO
! scope="row" | Linear unforced DHO
| <div class="plainlist">
| {{plainlist}}
* ''k'' = spring constant
* ''k'' = spring constant
* ''b'' = Damping coefficient
* ''b'' = Damping coefficient
{{endplainlist}}
</div>
| <math>\omega' = \sqrt{\frac{k}{m}-\left ( \frac{b}{2m} \right )^2 } \,\!</math>
| <math>\omega' = \sqrt{\frac{k}{m}-\left ( \frac{b}{2m} \right )^2 } </math>
|-
|-
! scope="row" | Low amplitude angular SHO
! scope="row" | Low amplitude angular SHO
| <div class="plainlist">
| {{plainlist}}
* ''I'' = Moment of inertia about oscillating axis
* ''I'' = Moment of inertia about oscillating axis
* ''κ'' = torsion constant
* ''κ'' = torsion constant
{{endplainlist}}
</div>
| <math>\omega = \sqrt{\frac{\kappa}{I}}\,\!</math>
| <math>\omega = \sqrt{\frac{\kappa}{I}}</math>
|-
|-
! scope="row" | Low amplitude simple pendulum
! scope="row" | Low amplitude simple pendulum
| <div class="plainlist">
| {{plainlist}}
* ''L'' = Length of pendulum
* ''L'' = Length of pendulum
* ''g'' = Gravitational acceleration
* ''g'' = Gravitational acceleration
* Θ = Angular amplitude
* Θ = Angular amplitude
{{endplainlist}}
</div>
| Approximate value<br />
| Approximate value
<math>\omega = \sqrt{\frac{g}{L}}\,\!</math>
<math display="block">\omega = \sqrt{\frac{g}{L}}</math>


Exact value can be shown to be:<br />
Exact value can be shown to be:
<math>\omega = \sqrt{\frac{g}{L}} \left [ 1 + \sum_{k=1}^\infty \frac{\prod_{n=1}^k \left ( 2n-1 \right )}{\prod_{n=1}^m \left ( 2n \right )} \sin^{2n} \Theta \right ]\,\!</math>
<math display="block">\omega = \sqrt{\frac{g}{L}} \left [ 1 + \sum_{k=1}^\infty \frac{\prod_{n=1}^k \left ( 2n-1 \right )}{\prod_{n=1}^m \left ( 2n \right )} \sin^{2n} \Theta \right ]</math>
|}
|}
{| class="wikitable"
{| class="wikitable"
Line 616: Line 632:
|-
|-
! scope="row" | SHM energy
! scope="row" | SHM energy
| <div class="plainlist">
| {{plainlist}}
* ''T'' = kinetic energy
* ''T'' = kinetic energy
* ''U'' = potential energy
* ''U'' = potential energy
* ''E'' = total energy
* ''E'' = total energy
{{endplainlist}}
</div>
| Potential energy<br />
| Potential energy
<math>U = \frac{m}{2} \left ( x \right )^2 = \frac{m \left( \omega A \right )^2}{2} \cos^2(\omega t + \phi)\,\!</math>
<math display="block">U = \frac{m}{2} \left ( x \right )^2 = \frac{m \left( \omega A \right )^2}{2} \cos^2(\omega t + \phi)</math>
Maximum value at x = A:<br />
Maximum value at ''x'' = ''A'':
<math>U_\mathrm{max} \frac{m}{2} \left ( \omega A \right )^2 \,\!</math>
<math display="block">U_\mathrm{max} \frac{m}{2} \left ( \omega A \right )^2 </math>


Kinetic energy<br />
Kinetic energy
<math>T = \frac{\omega^2 m}{2} \left ( \frac{\mathrm{d} x}{\mathrm{d} t} \right )^2 = \frac{m \left ( \omega A \right )^2}{2}\sin^2\left ( \omega t + \phi \right )\,\!</math>
<math display="block">T = \frac{\omega^2 m}{2} \left ( \frac{\mathrm{d} x}{\mathrm{d} t} \right )^2 = \frac{m \left ( \omega A \right )^2}{2}\sin^2\left ( \omega t + \phi \right )</math>


Total energy<br />
Total energy
<math>E = T + U \,\!</math>
<math display="block">E = T + U </math>
|-
|-
! scope="row" | DHM energy
! scope="row" | DHM energy
|
|
| <math>E = \frac{m \left ( \omega A \right )^2}{2}e^{-bt/m} \,\!</math>
| <math>E = \frac{m \left ( \omega A \right )^2}{2}e^{-bt/m} </math>
|}
|}


==See also==
==See also==
{{multicol}}
{{div col}}
*[[List of physics formulae]]
*[[List of physics formulae]]
*[[Defining equation (physics)]]
*[[Defining equation (physical chemistry)]]
*[[Defining equation (physical chemistry)]]
*[[Constitutive equation]]
*[[Constitutive equation]]
Line 648: Line 663:
*[[Thermodynamics]]
*[[Thermodynamics]]
*[[Acoustics]]
*[[Acoustics]]
{{multicol-break}}
*[[Isaac Newton]]
*[[Isaac Newton]]
*[[List of equations in wave theory]]
*[[List of equations in wave theory]]
Line 658: Line 672:
*[[List of equations in quantum mechanics]]
*[[List of equations in quantum mechanics]]
*[[List of equations in nuclear and particle physics]]
*[[List of equations in nuclear and particle physics]]
{{multicol-end}}
{{div col end}}


==Notes==
==Notes==
Line 664: Line 678:


==References==
==References==
*{{citation|title=Mathematical Methods of Classical Mechanics|last=Arnold|first=Vladimir I.|publisher=Springer|year=1989|isbn=978-0-387-96890-2|edition=2nd}}
*{{citation|title=Mathematical Methods of Classical Mechanics|last=Arnold|first=Vladimir I.|publisher=Springer|year=1989|isbn=978-0-387-96890-2|edition=2nd|url-access=registration|url=https://archive.org/details/mathematicalmeth0000arno}}
*{{citation|title=[[Classical Mechanics (Kibble and Berkshire)|Classical Mechanics]]|last1=Berkshire|last2=Kibble|first1=Frank H.|first2=T. W. B.|author2-link=Tom Kibble|edition=5th|publisher=Imperial College Press|year=2004|isbn=978-1-86094-435-2}}
*{{citation|title=[[Classical Mechanics (Kibble and Berkshire)|Classical Mechanics]]|last1=Berkshire|last2=Kibble|first1=Frank H.|first2=T. W. B.|author1-link=Frank H. Berkshire|author2-link=Tom Kibble|edition=5th|publisher=Imperial College Press|year=2004|isbn=978-1-86094-435-2}}
*{{citation|title=Structure and Interpretation of Classical Mechanics|last1=Mayer|last2=Sussman|last3=Wisdom|first1=Meinhard E.|first2=Gerard J.|first3=Jack|publisher=MIT Press|year=2001|isbn=978-0-262-19455-6}}
*{{citation|title=Structure and Interpretation of Classical Mechanics|last1=Mayer|last2=Sussman|last3=Wisdom|first1=Meinhard E.|first2=Gerard J.|first3=Jack|publisher=MIT Press|year=2001|isbn=978-0-262-19455-6}}


{{Classical mechanics derived SI units}}
{{Classical mechanics derived SI units}}


{{DEFAULTSORT:List Of Equations In Classical Mechanics}}
{{DEFAULTSORT:Equations In Classical Mechanics}}
[[Category:Classical mechanics]]
[[Category:Classical mechanics]]
[[Category:Lists of physics equations|Classical Mechanics]]
[[Category:Mathematics-related lists|Equations in classical mechanics]]
[[Category:Equations of physics]]

Latest revision as of 05:57, 17 May 2024

Classical mechanics is the branch of physics used to describe the motion of macroscopic objects.[1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known.[2] The subject is based upon a three-dimensional Euclidean space with fixed axes, called a frame of reference. The point of concurrency of the three axes is known as the origin of the particular space.[3]

Classical mechanics utilises many equations—as well as other mathematical concepts—which relate various physical quantities to one another. These include differential equations, manifolds, Lie groups, and ergodic theory.[4] This article gives a summary of the most important of these.

This article lists equations from Newtonian mechanics, see analytical mechanics for the more general formulation of classical mechanics (which includes Lagrangian and Hamiltonian mechanics).

Classical mechanics[edit]

Mass and inertia[edit]

Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
Linear, surface, volumetric mass density λ or μ (especially in acoustics, see below) for Linear, σ for surface, ρ for volume.

kg mn, n = 1, 2, 3 M Ln
Moment of mass[5] m (No common symbol) Point mass:

Discrete masses about an axis :

Continuum of mass about an axis :

kg m M L
Center of mass rcom

(Symbols vary)

i-th moment of mass

Discrete masses:

Mass continuum:

m L
2-Body reduced mass m12, μ Pair of masses = m1 and m2 kg M
Moment of inertia (MOI) I Discrete Masses:

Mass continuum:

kg m2 M L2

Derived kinematic quantities[edit]

Kinematic quantities of a classical particle: mass m, position r, velocity v, acceleration a.
Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
Velocity v m s−1 L T−1
Acceleration a m s−2 L T−2
Jerk j m s−3 L T−3
Jounce s m s−4 L T−4
Angular velocity ω rad s−1 T−1
Angular Acceleration α rad s−2 T−2
Angular jerk ζ rad s−3 T−3

Derived dynamic quantities[edit]

Angular momenta of a classical object.

Left: intrinsic "spin" angular momentum S is really orbital angular momentum of the object at every point,

right: extrinsic orbital angular momentum L about an axis,

top: the moment of inertia tensor I and angular velocity ω (L is not always parallel to ω)[6]

bottom: momentum p and its radial position r from the axis.

The total angular momentum (spin + orbital) is J.
Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
Momentum p kg m s−1 M L T−1
Force F N = kg m s−2 M L T−2
Impulse J, Δp, I kg m s−1 M L T−1
Angular momentum about a position point r0, L, J, S

Most of the time we can set r0 = 0 if particles are orbiting about axes intersecting at a common point.

kg m2 s−1 M L2 T−1
Moment of a force about a position point r0,

Torque

τ, M N m = kg m2 s−2 M L2 T−2
Angular impulse ΔL (no common symbol) kg m2 s−1 M L2 T−1

General energy definitions[edit]

Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
Mechanical work due to a Resultant Force W J = N m = kg m2 s−2 M L2 T−2
Work done ON mechanical system, Work done BY WON, WBY J = N m = kg m2 s−2 M L2 T−2
Potential energy φ, Φ, U, V, Ep J = N m = kg m2 s−2 M L2 T−2
Mechanical power P W = J s−1 M L2 T−3

Every conservative force has a potential energy. By following two principles one can consistently assign a non-relative value to U:

  • Wherever the force is zero, its potential energy is defined to be zero as well.
  • Whenever the force does work, potential energy is lost.

Generalized mechanics[edit]

Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
Generalized coordinates q, Q varies with choice varies with choice
Generalized velocities varies with choice varies with choice
Generalized momenta p, P varies with choice varies with choice
Lagrangian L

where and p = p(t) are vectors of the generalized coords and momenta, as functions of time

J M L2 T−2
Hamiltonian H J M L2 T−2
Action, Hamilton's principal function S, J s M L2 T−1

Kinematics[edit]

In the following rotational definitions, the angle can be any angle about the specified axis of rotation. It is customary to use θ, but this does not have to be the polar angle used in polar coordinate systems. The unit axial vector

defines the axis of rotation, = unit vector in direction of r, = unit vector tangential to the angle.

Translation Rotation
Velocity Average:

Instantaneous:

Angular velocity
Rotating rigid body:
Acceleration Average:

Instantaneous:

Angular acceleration

Rotating rigid body:

Jerk Average:

Instantaneous:

Angular jerk

Rotating rigid body:

Dynamics[edit]

Translation Rotation
Momentum Momentum is the "amount of translation"

For a rotating rigid body:

Angular momentum

Angular momentum is the "amount of rotation":

and the cross-product is a pseudovector i.e. if r and p are reversed in direction (negative), L is not.

In general I is an order-2 tensor, see above for its components. The dot · indicates tensor contraction.

Force and Newton's 2nd law Resultant force acts on a system at the center of mass, equal to the rate of change of momentum:

For a number of particles, the equation of motion for one particle i is:[7]

where pi = momentum of particle i, Fij = force on particle i by particle j, and FE = resultant external force (due to any agent not part of system). Particle i does not exert a force on itself.

Torque

Torque τ is also called moment of a force, because it is the rotational analogue to force:[8]

For rigid bodies, Newton's 2nd law for rotation takes the same form as for translation:

Likewise, for a number of particles, the equation of motion for one particle i is:[9]

Yank Yank is rate of change of force:

For constant mass, it becomes;

Rotatum

Rotatum Ρ is also called moment of a Yank, because it is the rotational analogue to yank:

Impulse Impulse is the change in momentum:

For constant force F:

Twirl/angular impulse is the change in angular momentum:

For constant torque τ:

Precession[edit]

The precession angular speed of a spinning top is given by:

where w is the weight of the spinning flywheel.

Energy[edit]

The mechanical work done by an external agent on a system is equal to the change in kinetic energy of the system:

General work-energy theorem (translation and rotation)[edit]

The work done W by an external agent which exerts a force F (at r) and torque τ on an object along a curved path C is:

where θ is the angle of rotation about an axis defined by a unit vector n.

Kinetic energy[edit]

The change in kinetic energy for an object initially traveling at speed and later at speed is:

Elastic potential energy[edit]

For a stretched spring fixed at one end obeying Hooke's law, the elastic potential energy is

where r2 and r1 are collinear coordinates of the free end of the spring, in the direction of the extension/compression, and k is the spring constant.

Euler's equations for rigid body dynamics[edit]

Euler also worked out analogous laws of motion to those of Newton, see Euler's laws of motion. These extend the scope of Newton's laws to rigid bodies, but are essentially the same as above. A new equation Euler formulated is:[10]

where I is the moment of inertia tensor.

General planar motion[edit]

The previous equations for planar motion can be used here: corollaries of momentum, angular momentum etc. can immediately follow by applying the above definitions. For any object moving in any path in a plane,

the following general results apply to the particle.

Kinematics Dynamics
Position

Velocity

Momentum

Angular momenta

Acceleration

The centripetal force is

where again m is the mass moment, and the Coriolis force is

The Coriolis acceleration and force can also be written:

Central force motion[edit]

For a massive body moving in a central potential due to another object, which depends only on the radial separation between the centers of masses of the two objects, the equation of motion is:

Equations of motion (constant acceleration)[edit]

These equations can be used only when acceleration is constant. If acceleration is not constant then the general calculus equations above must be used, found by integrating the definitions of position, velocity and acceleration (see above).

Linear motion Angular motion

Galilean frame transforms[edit]

For classical (Galileo-Newtonian) mechanics, the transformation law from one inertial or accelerating (including rotation) frame (reference frame traveling at constant velocity - including zero) to another is the Galilean transform.

Unprimed quantities refer to position, velocity and acceleration in one frame F; primed quantities refer to position, velocity and acceleration in another frame F' moving at translational velocity V or angular velocity Ω relative to F. Conversely F moves at velocity (—V or —Ω) relative to F'. The situation is similar for relative accelerations.

Motion of entities Inertial frames Accelerating frames
Translation

V = Constant relative velocity between two inertial frames F and F'.
A = (Variable) relative acceleration between two accelerating frames F and F'.

Relative position

Relative velocity

Equivalent accelerations

Relative accelerations

Apparent/fictitious forces

Rotation

Ω = Constant relative angular velocity between two frames F and F'.
Λ = (Variable) relative angular acceleration between two accelerating frames F and F'.

Relative angular position

Relative velocity

Equivalent accelerations

Relative accelerations

Apparent/fictitious torques

Transformation of any vector T to a rotating frame

Mechanical oscillators[edit]

SHM, DHM, SHO, and DHO refer to simple harmonic motion, damped harmonic motion, simple harmonic oscillator and damped harmonic oscillator respectively.

Equations of motion
Physical situation Nomenclature Translational equations Angular equations
SHM
  • x = Transverse displacement
  • θ = Angular displacement
  • A = Transverse amplitude
  • Θ = Angular amplitude

Solution:

Solution:

Unforced DHM
  • b = damping constant
  • κ = torsion constant

Solution (see below for ω'):

Resonant frequency:

Damping rate:

Expected lifetime of excitation:

Solution:

Resonant frequency:

Damping rate:

Expected lifetime of excitation:

Angular frequencies
Physical situation Nomenclature Equations
Linear undamped unforced SHO
  • k = spring constant
  • m = mass of oscillating bob
Linear unforced DHO
  • k = spring constant
  • b = Damping coefficient
Low amplitude angular SHO
  • I = Moment of inertia about oscillating axis
  • κ = torsion constant
Low amplitude simple pendulum
  • L = Length of pendulum
  • g = Gravitational acceleration
  • Θ = Angular amplitude
Approximate value

Exact value can be shown to be:

Energy in mechanical oscillations
Physical situation Nomenclature Equations
SHM energy
  • T = kinetic energy
  • U = potential energy
  • E = total energy
Potential energy

Maximum value at x = A:

Kinetic energy

Total energy

DHM energy

See also[edit]

Notes[edit]

  1. ^ Mayer, Sussman & Wisdom 2001, p. xiii
  2. ^ Berkshire & Kibble 2004, p. 1
  3. ^ Berkshire & Kibble 2004, p. 2
  4. ^ Arnold 1989, p. v
  5. ^ "Section: Moments and center of mass".
  6. ^ R.P. Feynman; R.B. Leighton; M. Sands (1964). Feynman's Lectures on Physics (volume 2). Addison-Wesley. pp. 31–7. ISBN 978-0-201-02117-2.
  7. ^ "Relativity, J.R. Forshaw 2009"
  8. ^ "Mechanics, D. Kleppner 2010"
  9. ^ "Relativity, J.R. Forshaw 2009"
  10. ^ "Relativity, J.R. Forshaw 2009"

References[edit]