Log-normal distribution

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 83.67.149.218 (talk) at 15:14, 4 March 2007 (→‎Related distributions). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Log-normal
Probability density function
Plot of the Lognormal PMF
μ=0
Cumulative distribution function
Plot of the Lognormal CMF
μ=0
Parameters
Support
PDF
CDF
Mean
Median
Mode
Variance
Skewness
Excess kurtosis
Entropy
MGF (see text for raw moments)

In probability and statistics, the log-normal distribution is the probability distribution of any random variable whose logarithm is normally distributed. If X is a random variable with a normal distribution, then exp(X) has a log-normal distribution; likewise, if Y is log-normally distributed, then log(Y) is normally distributed.

"Log-normal" is also written "log normal" or "lognormal".

A variable might be modeled as log-normal if it can be thought of as the multiplicative product of many small independent factors. A typical example is the long-term return rate on a stock investment: it can be considered as the product of the daily return rates.

The log-normal distribution has the probability density function (pdf)

for , where and are the mean and standard deviation of the variable's logarithm. The expected value is

and the variance is

Equivalent relationships may be written to obtain and given the expected value and standard deviation:

Geometric mean and geometric standard deviation

The geometric mean of the log-normal distribution is exp(μ) and, and the geometric standard deviation is equal to exp(σ).

If a sample of data is determined to come from a log-normally distributed population, the geometric mean and the geometric standard deviation may be used to estimate confidence intervals akin to the way the arithmetic mean and standard deviation are used to estimate confidence intervals for a normally distributed sample of data.

Confidence interval bounds log space geometric
3σ lower bound
2σ lower bound
1σ lower bound
1σ upper bound
2σ upper bound
3σ upper bound

Where geometric mean and geometric standard deviation

Moments

The first few raw moments are:

or generally:

Partial expectation

The partial expectation of a random variable with respect to a threshold is defined as

where is the density. For a lognormal density it can be shown that

where is the cumulative distribution function of the standard normal. The partial expectation of a lognormal has applications in insurance and in economics (for example it can be used to derive the Black-Scholes formula).

Maximum likelihood estimation of parameters

For determining the maximum likelihood estimators of the log-normal distribution parameters μ and σ, we can use the same procedure as for the normal distribution. To avoid repetition, we observe that

where by we denote the density probability function of the log-normal distribution and by —that of the normal distribution. Therefore, using the same indices to denote distributions, we can write the log-likelihood function thus:

Since the first term is constant with regards to μ and σ, both logarithmic likelihood functions, and , reach their maximum with the same μ and σ. Hence, using the formulas for the normal distribution maximum likelihood parameter estimators and the equality above, we deduce that for the log-normal distribution it holds that

Related distributions

  • is a normal distribution if and .
  • If are independent log-normally distributed variables with the same μ parameter and possibly varying σ, and , then Y is a log-normally distributed variable as well: .
  • Let be independent log-normally distributed variables with the

same parameter and possibly varying parameters, and . The distribution of has no closed-form expression, but can be reasonably approximated by another log-normal distribution . A simple approximation is obtained by matching the mean and variance:

(Note: Use with caution. Formulas were copied from lecture notes found on the web which did not include the "/2" in the formula for ; however without this the formula is inconsistent for .)

  • A substitute for the log-normal whose integral can be expressed in terms of more elementary functions (Swamee, 2002) can be obtained based on the logistic distribution to get the CDF

Further reading

References

See also