Arno Villringer

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 194.95.183.21 (talk) at 08:12, 30 August 2022 (→‎Research Foci: updated expert activities and added refs). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Arno Villringer
Born1958
NationalityGerman
AwardsPater Leander Fischer Award, German Society of Laser Medicine (2005), endowed professorship (by Deutsche Forschungs Gemeinschaft) at Charité – Humboldt-Universität zu Berlin (1996), Gerhard Hess Award, DFG (1993), DFG foreign exchange scholarship (1986)
Scientific career
Fieldsmedicine, neurology, stroke research, brain plasticity

Arno Villringer (born 1958, Schopfheim, Germany) is a Director at the Department of Neurology [1] at the Max Planck Institute for Human Cognitive and Brain Sciences [2] in Leipzig, Germany; Director of the Department of Cognitive Neurology at University of Leipzig Medical Center [3]; and Academic Director of the Berlin School of Mind and Brain [4] and the Mind&Brain Institute [5], Berlin. He holds a full professorship at University of Leipzig and an honorary professorship at Charité, Humboldt-Universität zu Berlin. From July 2022 to June 2025 he is the Chairperson of the Human Sciences Section of the Max Planck Society[6].

Academic Career and Achievements

Arno Villringer studied medicine at the University of Freiburg (German: Albert-Ludwigs-Universität Freiburg) from 1977 to 1984, graduating with a Doctor of Medicine (summa cum laude) higher degree in 1984. After a fellowship at the Magnetic Resonance Imaging Unit at Massachusetts General Hospital at Harvard Medical School in 1985, he worked in Munich, Germany, becoming a board certified neurologist in 1992, and gaining his professorial degree (Habilitation) at the Ludwig Maximilian University of Munich in 1994 [7]. From 1993 to 2007, he worked at the Department of Neurology at the Charité, Berlin, first as a consultant, and later as head of the Department of Neurology at the Benjamin Franklin Campus. Since 2006 he has been Academic Director of the Berlin School of Mind and Brain [8] and the Mind&Brain institute (since 2010) [9], since 2007 he has been Director of the Department of Neurology at the Max Planck Institute for Human Cognitive and Brain Sciences in Leipzig, Germany [10], and director of the Department of Cognitive Neurology at the University of Leipzig Medical Center [11].

Research Foci

Research Interests:

  • Neurocognition of vascular risk factors and the path from risk factors to stroke and dementia
  • Mind Brain Body interactions
  • Neuroplasticity
  • Conscious and unconscious processing in the somatosensory system
  • Diverse research methods including behavioral and neurocognitive testing, neuroimaging (MRI, EEG, MEG, fNIRS, EEG/fMRI), neurostimulation (TDCS, TMS, TACS, focused ultrasound), brain computer interfaces, and virtual reality. [12]

Arno Villringer is the author of more than 600 academic articles (as of 2022) with more than >56000 citations, and an h-index of 116 (Google Scholar, August 2022) [13]

Pioneering work:

Perfusion Imaging:

Arno Villringer pioneered magnetic resonance perfusion imaging of the brain by demonstrating that susceptibility contrast agents such as GdDTPA may be employed in magnetic resonance imaging (MRI) (Villringer et al., 1988 [14]). The susceptibility-based contrast mechanism later became relevant for the Blood Oxygenation Level Dependent (BOLD) signal in functional magnetic resonance imaging (fMRI).

Optical Imaging:

In 1993, Villringer showed feasibility of noninvasive functional near-infrared spectroscopy and imaging (fNIRS, fNIRI) of the human brain (Villringer et al., 1993 [15]; Villringer and Chance, 1997 [16]) followed by > 50 publications establishing /validating fNIRS. Physiology empowered brain imaging: Since 1992 his research focus has been on neurophysiological mechanisms underlying brain function and plasticity, using multi-modal brain imaging, e.g., signatures of neuronal inhibition in functional brain imaging (Wenzel et al., 2000 [17]; Blankenburg et al., 2003 [18]), combined fNIRS/fMRI to establish relationship between BOLD and deoxy-Hb concentration in fMRI (Kleinschmidt et al., 1996 [19]), combined EEG/fMRI to show fMRI correlates of background rhythms (Moosmann et al., 2003 [20]; Ritter et al., 2009 [21]) and simultaneously assess neuronal spiking and fMRI (Ritter et al., 2008 [22]).

Brain plasticity, development of vascular risk factors, stroke:

Villringer currently pursues the hypothesis that (maladaptive) brain plasticity is crucial for the development of vascular risk factors leading to stroke and for the (lack of) recovery after stroke, and that brain plasticity can be beneficially modified. For this purpose, he employs multi-modal brain imaging to understand basic neurophysiological mechanisms underlying human brain plasticity in cortical and subcortical brain areas, and their interaction. Behavioral correlates include sensorimotor function, reaction to stress, and emotions. The clinical applications are (i) prevention of vascular risk factors (obesity, hypertension) and subsequent stroke, and (ii) recovery after stroke.


Expert activities/Board Memberships: [23]

  • 1999–present: German Competence Network Stroke, Berlin, Germany (Coordinator) [24]
  • 2005–present: International Max Planck Research School on the Life Course, Berlin: Member of Faculty [25]
  • 2008–present: Leipzig Research Center for Civilization Diseases (LIFE), Germany: Board of Directors
  • 2010–2016: Integrated Research and Treatment Center (IFB) AdiposityDiseases: Steering Committee
  • 2010–2018: Max Planck International Research Network on Aging (MaxNetAging), Rostock, Germany: Member
  • 2011–present: Dialogforum Depression, Berlin, Germany: Initiator
  • 2011–present: Research Initiative MPS-UCL, Berlin, Germany: Computational Psychiatry and Aging Research: Principal Investigator [26]
  • 2012–2019: NeuroCure, Research Cluster of Excellence (German Excellence Initiative), Berlin, Germany: Principal Investigator [27]
  • 2013–present: Collaborative Research Center 1052 of the German Research Foundation [Sonderforschungsbereich der DFG] “Obesity Mechanism”, Leipzig, Germany: Steering Committee [28]
  • 2013–2020: Spokesperson, International Max Planck Research School IMPRS NeuroCom, Leipzig, Germany [29]
  • 2018–present: International Max Planck Research School IMPRS COMP2PSYCH: Faculty Member [30]
  • 2018–present: Research Training Group 2386, Extrospection. External Access to Higher Cognitive Processes: Faculty Member [31]
  • 2018–present: Spokesperson of the Max Planck School of Cognition (Germany-wide, 15 universities, 10 Max Planck Institutes) [32]
  • 2021–2022: Deputy Chairperson, Human Sciences Section of the Max Planck Society
  • 2022–2025: Chairperson of the Human Sciences Section of the Max Planck Society (comprising 22 Max Planck Institutes) [33]
  • 2022–2025: ex officio member of the Senate of the Max Planck Society

Memberships in Scientific Organizations (present)

  • Deutsche Gesellschaft für Neurologie
  • Deutsche Neurowissenschaftliche Gesellschaft (Founding Member)
  • Deutsche Schlaganfall Gesellschaft (Founding Member)
  • International Organization for Human Brain Mapping (Founding Member)
  • International Society for Magnetic Resonance in Medicine
  • Society for Neuroscience

Awards

  • Pater Leander Fischer Award, German Society of Laser Medicine (2005)[34]
  • Gerhard Hess Award, DFG (1993)
  • DFG foreign exchange scholarship (1986)

Selected works

For a complete list of publications, see his Google Scholar page.

  • Grund M, Al E, Pabst M, Dabbagh A, Stephani T, Nierhaus T, Gaebler M, & Villringer A (2022). Respiration, heartbeat, and conscious tactile perception. J Neurosci 42(4): 643-656. [35]
  • Hofmann SM, Klotzsche F, Mariola A, Nikulin V, Villringer A, & Gaebler M (2021). Decoding subjective emotional arousal from EEG during an immersive virtual reality experience. Elife 10. [36]
  • Stephani T, Hodapp A, Jamshidi Idaji M, Villringer A, & Nikulin VV (2021). Neural excitability and sensory input determine intensity perception with opposing directions in initial cortical responses. Elife 10. [37]
  • Al E, Iliopoulos F, Forschack N, Nierhaus T, Grund M, Motyka P, Gaebler M, Nikulin VV, & Villringer A (2020). Heart-brain interactions shape somatosensory perception and evoked potentials. Proc Natl Acad Sci U S A 117(19): 10575-10584. [38]
  • Mueller K, Thiel F, Beutner F, Teren A, Frisch S, Ballarini T, Moller HE, Ihle K, Thiery J, Schuler G, Villringer A, & Schroeter ML (2020). Brain damage with heart failure: cardiac biomarker alterations and gray matter decline. Circ Res 126(6): 750-764. [39]
  • Stephani T, Waterstraat G, Haufe S, Curio G, Villringer A, & Nikulin VV (2020). Temporal signatures of criticality in human cortical excitability as probed by early somatosensory responses. J Neurosci 40(34): 6572-6583. [40]
  • Hotter B, Galinovic I, Kunze C, Brunecker P, Jungehulsing GJ, Villringer A, Endres M, Villringer K, & Fiebach JB (2019). High-resolution diffusion-weighted imaging identifies ischemic lesions in a majority of transient ischemic attack patients. Ann Neurol 86(3): 452-457. [41]
  • Iemi L, Busch NA, Laudini A, Haegens S, Samaha J, Villringer A, & Nikulin VV (2019). Multiple mechanisms link prestimulus neural oscillations to sensory responses. Elife 8. [42]
  • Lampe L, Zhang R, Beyer F, Huhn S, Kharabian Masouleh S, Preusser S, Bazin PL, Schroeter ML, Villringer A, & Witte AV (2019). Visceral obesity relates to deep white matter hyperintensities via inflammation. Ann Neurol 85(2): 194-203. [43]
  • Schaare HL, Kharabian Masouleh S, Beyer F, Kumral D, Uhlig M, Reinelt JD, Reiter AMF, Lampe L, Babayan A, Erbey M, Roebbig J, Schroeter ML, Okon-Singer H, Muller K, Mendes N, Margulies DS, Witte AV, Gaebler M, & Villringer A (2019). Association of peripheral blood pressure with gray matter volume in 19- to 40-year-old adults. Neurology 92(8): e758-e773. [44]
  • Zsido RG, Heinrich M, Slavich GM, Beyer F, Kharabian Masouleh S, Kratzsch J, Raschpichler M, Mueller K, Scharrer U, Loffler M, Schroeter ML, Stumvoll M, Villringer A, Witte AV, & Sacher J (2019). Association of estradiol and visceral fat With structural brain networks and memory performance in adults. JAMA Netw Open 2(6): e196126. [45]
  • Kuehn E, Haggard P, Villringer A, Pleger B, & Sereno MI (2018). Visually-driven maps in area 3b. J Neurosci 38(5): 1295-1310. [46]
  • Krause T, Asseyer S, Taskin B, Floel A, Witte AV, Mueller K, Fiebach JB, Villringer K, Villringer A, & Jungehulsing GJ (2016). The cortical signature of central poststroke pain: gray matter decreases in somatosensory, insular, and prefrontal cortices. Cereb Cortex 26(1): 80-88. [47]
  • Schlogl H, Horstmann A, Villringer A, & Stumvoll M (2016). Functional neuroimaging in obesity and the potential for development of novel treatments. Lancet Diabetes Endocrinol 4(8): 695-705. [48]
  • Sehm B, Steele CJ, Villringer A, & Ragert P (2016). Mirror motor activity during right-hand contractions and Its relation to white matter in the posterior midbody of the corpus callosum. Cereb Cortex 26(11): 4347-4355. [49]
  • Nierhaus T, Forschack N, Piper SK, Holtze S, Krause T, Taskin B, Long X, Stelzer J, Margulies DS, Steinbrink J, & Villringer A (2015). Imperceptible somatosensory stimulation alters sensorimotor background rhythm and connectivity. J Neurosci 35(15): 5917-5925. [50]
  • Preusser S, Thiel SD, Rook C, Roggenhofer E, Kosatschek A, Draganski B, Blankenburg F, Driver J, Villringer A, & Pleger B (2015). The perception of touch and the ventral somatosensory pathway. Brain 138(Pt 3): 540-548. [51]
  • Striem-Amit E, Ovadia-Caro S, Caramazza A, Margulies DS, Villringer A, & Amedi A (2015). Functional connectivity of visual cortex in the blind follows retinotopic organization principles. Brain 138(Pt 6): 1679-1695. [52]
  • Okon-Singer H, Mehnert J, Hoyer J, Hellrung L, Schaare HL, Dukart J, & Villringer A (2014). Neural control of vascular reactions: impact of emotion and attention. J Neurosci 34(12): 4251-4259. [53]
  • Ovadia-Caro S, Margulies DS, & Villringer A (2014). The value of resting-state functional magnetic resonance imaging in stroke. Stroke 45(9): 2818-2824. [54]
  • Schaefer A, Burmann I, Regenthal R, Arelin K, Barth C, Pampel A, Villringer A, Margulies DS, & Sacher J (2014). Serotonergic modulation of intrinsic functional connectivity. Curr Biol 24(19): 2314-2318. [55]
  • Lv Y, Margulies DS, Cameron Craddock R, Long X, Winter B, Gierhake D, Endres M, Villringer K, Fiebach J, & Villringer A (2013). Identifying the perfusion deficit in acute stroke with resting-state functional magnetic resonance imaging. Ann Neurol 73(1): 136-140. [56]
  • Schlogl H, Kabisch S, Horstmann A, Lohmann G, Muller K, Lepsien J, Busse-Voigt F, Kratzsch J, Pleger B, Villringer A, & Stumvoll M (2013). Exenatide-induced reduction in energy intake is associated with increase in hypothalamic connectivity. Diabetes Care 36(7): 1933-1940. [57]
  • Sehm B, Schnitzler T, Obleser J, Groba A, Ragert P, Villringer A, & Obrig H (2013). Facilitation of inferior frontal cortex by transcranial direct current stimulation induces perceptual learning of severely degraded speech. J Neurosci 33(40): 15868-15878. [58]
  • Schroeter ML, Vogt B, Frisch S, Becker G, Barthel H, Mueller K, Villringer A, & Sabri O (2012). Executive deficits are related to the inferior frontal junction in early dementia. Brain 135(Pt 1): 201-215. [59]
  • Becker, R., Reinacher, M., Freyer, F., Villringer, A., Ritter, P. (2011). How ongoing neuronal oscillations account for evoked fMRI variability. Journal of Neuroscience 31(30):11016-27. [60]
  • Taubert, M., Draganski, B., Anwander, A., Mueller, K., Horstmann, A., Villringer, A., Ragert, P. (2010). Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections. Journal of Neuroscience 30(35):11670-7. [61]
  • Ritter, P., Moosmann, M., Villringer, A. (2009). Rolandic alpha and beta EEG rhythms' strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex. Human Brain Mapping 30(4):1168-87. [62]
  • Ritter P, Freyer F, Curio G, Villringer A. (2008). High-frequency (600 Hz) population spikes in human EEG delineate thalamic and cortical fMRI activation sites. Neuroimage. 42(2):483-90. [63]
  • Koch, SP., Steinbrink, J., Villringer, A., & Obrig, H. (2006). Synchronization between background activity and visually evoked potential is not mirrored by focal hyperoxygenation. Implications for the interpretation of vascular brain imaging. Journal of Neuroscience, 26(18), 4940-4948. [64]
  • Preuschhof, C., Heekeren, H. R., Taskin, B., Schubert, T., & Villringer, A. (2006). Neural correlates of vibrotactile working memory in the human brain. Journal of Neuroscience, 26(51), 13231-13239. [65]
  • Taskin, B., Jungehulsing, GJ., Ruben, J., Brunecker, P., Krause, T., Blankenburg, F., et al. (2006). Preserved responsiveness of secondary somatosensory cortex in patients with thalamic stroke. Cerebral Cortex, 16(10), 1431-1439. [66]
  • Blankenburg, F., Taskin, B., Ruben, J., Moosmann, M., Ritter, P., Curio, G., et al. (2003). Imperceptible stimuli and sensory processing impediment. Science, 299(5614), 1864. [67]
  • Moosmann, M., Ritter, P., Krastel, I., Brink, A., Thees, S., Blankenburg, F., Taskin, B., Obrig, H., Villringer, A. (2003). Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. Neuroimage. 20(1):145-58. [68]
  • Müller, N. G., Bartelt, O., Donner, TH., Villringer, A., & Brandt, SA. (2003). A physiological correlate of the ‘zoom lens’ of visual attention. Journal of Neuroscience, 23(9), 3561-3565. [69]
  • Wartenburger, I., Heekeren, H. R., Abutalebi, J., Cappa, S. F., Villringer, A., & Perani, D. (2003). Early setting of grammatical processing in the bilingual brain. Neuron, 37(1), 159-170. [70]
  • Ruben, J., Schwiemann, J., Deuchert, M., Meyer, R., Krause, T., Curio, G., et al. (2001). Somatotopic organization of human secondary somatosensory cortex. Cerebral Cortex, 11(5), 463-473. [71]
  • Wenzel, R., Wobst, P., Heekeren, H.H., Kwong, K.K., Brandt, S.A., Kohl, M., Obrig, H., Dirnagl, U., Villringer, A. (2000). Saccadic suppression induces focal hypooxygenation in the occipital cortex. J Cereb Blood Flow Metab. 20(7):1103-10 [72]
  • Villringer, A., & Chance, B. (1997). Noninvasive optical spectroscopy and imaging of human brain function. Trends in Neurosciences, 20(10), 435-442. [73]
  • Kleinschmidt, A., Obrig, H., Requardt, M., Merboldt, K.D., Dirnagl, U., Villringer, A., Frahm, J. (1996). Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy. J Cereb Blood Flow Metab. 16(5):817-26. [74]
  • Villringer, A., Planck, J., Hock, C., Schleinkofer, L., Dirnagl, U. (1993). Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci Lett. 154(1-2):101-4 [75]
  • Einhaeupl, KM., Villringer, A., Meister, W., Mehraein, S., Garner, C., Pellkofer, M., et al. (1991). Heparin treatment in sinus venous thrombosis. Lancet, 338(8767), 597-600. [76]
  • Villringer, A., Rosen, B. R., Belliveau, J. W., Ackerman, JL., Lauffer, RB., Buxton, RB., et al. (1988). Dynamic imaging with Lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magnetic Resonance in Medicine, 6(2), 164-174. [77]

References

  1. ^ "Department of Neurology".
  2. ^ https://www.cbs.mpg.de/en
  3. ^ "Unser Team".
  4. ^ "Berlin School of Mind and Brain: Bodies and committees".
  5. ^ "Berlin School of Mind and Brain: MindBrainBody Institute".
  6. ^ https://www.mpg.de/27912/human-sciences-section-introduction
  7. ^ "Curriculum Vitae".
  8. ^ "Berlin School of Mind and Brain: Bodies and committees".
  9. ^ "Berlin School of Mind and Brain: MindBrainBody Institute".
  10. ^ "Department of Neurology".
  11. ^ "Curriculum Vitae".
  12. ^ "Department of Neurology".
  13. ^ "Arno Villringer".
  14. ^ https://doi.org/10.1002/mrm.1910060205
  15. ^ https://doi.org/10.1016/0304-3940(93)90181-j
  16. ^ https://doi.org/10.1016/s0166-2236(97)01132-6
  17. ^ https://doi.org/10.1097/00004647-200007000-00010
  18. ^ https://doi.org/10.1126/science.1080806
  19. ^ https://doi.org/10.1097/00004647-199609000-00006
  20. ^ https://doi.org/10.1016/s1053-8119(03)00344-6
  21. ^ https://doi.org/10.1002/hbm.20585
  22. ^ https://doi.org/10.1016/j.neuroimage.2008.05.026
  23. ^ https://www.cbs.mpg.de/employees/villringer/cv
  24. ^ https://www.kompetenznetz-schlaganfall.de/89.0.html
  25. ^ https://www.imprs-life.mpg.de/people/arno-villringer
  26. ^ https://www.mps-ucl-centre.mpg.de/about-the-centre
  27. ^ https://neurocure.de/en/about-neurocure/structure.html
  28. ^ https://www.sfb1052.de/
  29. ^ https://imprs-neurocom.mpg.de/home
  30. ^ https://www.mpib-berlin.mpg.de/career/research-schools/imprs-comp2psych
  31. ^ http://www.mind-and-brain.de/rtg-2386/
  32. ^ https://cognition.maxplanckschools.org/en/people
  33. ^ https://www.mpg.de/27912/human-sciences-section-introduction
  34. ^ Pater-Leander-Fischer-Preis der Deutschen Gesellschaft für Lasermedizin an Berliner Neurologen (Pater Leander Fischer Award for Berlin neurologists) http://idw-online.mobi/pages/en/news117295 idw press release
  35. ^ https://doi.org/10.1523/JNEUROSCI.0592-21.2021
  36. ^ https://doi.org/10.7554/eLife.64812
  37. ^ https://doi.org/10.7554/eLife.67838
  38. ^ https://doi.org/10.1073/pnas.1915629117
  39. ^ https://doi.org/10.1161/CIRCRESAHA.119.315813
  40. ^ https://doi.org/10.1523/JNEUROSCI.0241-20.2020
  41. ^ https://doi.org/10.1002/ana.25551
  42. ^ https://doi.org/10.7554/eLife.43620
  43. ^ https://doi.org/10.1002/ana.25396
  44. ^ https://doi.org/10.1212/WNL.0000000000006947
  45. ^ https://doi.org/10.1001/jamanetworkopen.2019.6126
  46. ^ https://doi.org/10.1523/JNEUROSCI.0491-17.2017
  47. ^ https://doi.org/10.1093/cercor/bhu177
  48. ^ https://doi.org/10.1016/S2213-8587(15)00475-1
  49. ^ https://doi.org/10.1093/cercor/bhv217
  50. ^ https://doi.org/10.1523/JNEUROSCI.3806-14.2015
  51. ^ https://doi.org/10.1093/brain/awu370
  52. ^ https://doi.org/10.1093/brain/awv083
  53. ^ https://doi.org/10.1523/JNEUROSCI.0747-13.2014
  54. ^ https://doi.org/10.1161/STROKEAHA.114.003689
  55. ^ https://doi.org/10.1016/j.cub.2014.08.024
  56. ^ https://doi.org/10.1002/ana.23763
  57. ^ https://doi.org/10.2337/dc12-1925
  58. ^ https://doi.org/10.1523/JNEUROSCI.5466-12.2013
  59. ^ https://doi.org/10.1093/brain/awr311
  60. ^ https://doi.org/10.1523/JNEUROSCI.0210-11.2011
  61. ^ https://doi.org/10.1523/JNEUROSCI.2567-10.2010
  62. ^ https://doi.org/10.1002/hbm.20585
  63. ^ https://doi.org/10.1016/j.neuroimage.2008.05.026
  64. ^ https://doi.org/10.1523/JNEUROSCI.3989-05.2006
  65. ^ https://doi.org/10.1523/JNEUROSCI.2767-06.2006
  66. ^ https://doi.org/10.1093/cercor/bhj080
  67. ^ https://doi.org/10.1126/science.1080806
  68. ^ https://doi.org/10.1016/s1053-8119(03)00344-6
  69. ^ https://www.ncbi.nlm.nih.gov/pubmed/12736325
  70. ^ https://doi.org/10.1016/s0896-6273(02)01150-9
  71. ^ https://doi.org/10.1093/cercor/11.5.463
  72. ^ https://doi.org/10.1097/00004647-200007000-00010
  73. ^ https://doi.org/10.1016/s0166-2236(97)01132-6
  74. ^ https://doi.org/10.1097/00004647-199609000-00006
  75. ^ https://doi.org/10.1016/0304-3940(93)90181-j
  76. ^ https://doi.org/10.1016/0140-6736(91)90607-q
  77. ^ https://doi.org/10.1002/mrm.1910060205

External links