(31,10,3) block plan

from Wikipedia, the free encyclopedia

The (31,10,3) block plan is a special symmetrical block plan . To be able to construct it, a combinatorial problem had to be solved:

An empty 31 × 31 matrix was filled with ones in such a way that each row of the matrix contains exactly 10 ones and any two rows have exactly 3 ones in the same column. The solution to this problem is not trivial. There are only certain combinations of parameters (like here v = 31, k = 10, λ = 3) for which such a construction is feasible. The smallest of these (v, k, λ) are listed in this overview .

designation

This symmetrical 2- (31,10,3) block plan is called a 7th order triplane .

properties

This symmetrical block diagram has the parameters v = 31, k = 10, λ = 3 and thus the following properties:

  • It consists of 31 blocks and 31 points.
  • Each block contains exactly 10 points.
  • Every 2 blocks intersect in exactly 3 points.
  • Each point lies on exactly 10 blocks.
  • Each 2 points are connected by exactly 3 blocks.

Existence and characterization

There are exactly 151 non-isomorphic 2- (31,10,3) block plans. One of these solutions is:

List of blocks

All the blocks of this block plan are listed here; See this illustration to understand this list

  • Solution 1
  1   2   3   4   8  12  16  20  24  28
  1   2   3   5   9  13  17  21  25  29
  1   2   3   6  10  14  18  22  26  30
  7   8   9  10  12  13  14  20  21  22
 11  12  13  14  16  17  18  24  25  26
 15  16  17  18  20  21  22  28  29  30
  4   5   6  19  20  21  22  24  25  26
  8   9  10  23  24  25  26  28  29  30
  4   5   6  12  13  14  27  28  29  30
  4   5   6   8   9  10  16  17  18  31
  1   8  13  18  19  22  25  27  28  31
  1   4   7  12  17  22  23  26  29  31
  1   5   7   8  11  16  21  26  27  30
  1   6   9  11  12  15  20  25  30  31
  1   6   7  10  13  15  16  19  24  29
  1   5  10  11  14  17  19  20  23  28
  1   4   9  14  15  18  21  23  24  27
  2  10  12  17  19  21  24  27  30  31
  2   6   7  14  16  21  23  25  28  31
  2   4   7  10  11  18  20  25  27  29
  2   5   8  11  14  15  22  24  29  31
  2   5   7   9  12  15  18  19  26  28
  2   4   9  11  13  16  19  22  23  30
  2   6   8  13  15  17  20  23  26  27
  3   9  14  16  19  20  26  27  29  31
  3   5   7  13  18  20  23  24  30  31
  3   6   7   9  11  17  22  24  27  28
  3   4  10  11  13  15  21  26  28  31
  3   4   7   8  14  15  17  19  25  30
  3   6   8  11  12  18  19  21  23  29
  3   5  10  12  15  16  22  23  25  27

Incidence matrix

This is a representation of the incidence matrix of this block diagram; see this illustration to understand this matrix

  • Solution 1
O O O O . . . O . . . O . . . O . . . O . . . O . . . O . . .
O O O . O . . . O . . . O . . . O . . . O . . . O . . . O . .
O O O . . O . . . O . . . O . . . O . . . O . . . O . . . O .
. . . . . . O O O O . O O O . . . . . O O O . . . . . . . . .
. . . . . . . . . . O O O O . O O O . . . . . O O O . . . . .
. . . . . . . . . . . . . . O O O O . O O O . . . . . O O O .
. . . O O O . . . . . . . . . . . . O O O O . O O O . . . . .
. . . . . . . O O O . . . . . . . . . . . . O O O O . O O O .
. . . O O O . . . . . O O O . . . . . . . . . . . . O O O O .
. . . O O O . O O O . . . . . O O O . . . . . . . . . . . . O
O . . . . . . O . . . . O . . . . O O . . O . . O . O O . . O
O . . O . . O . . . . O . . . . O . . . . O O . . O . . O . O
O . . . O . O O . . O . . . . O . . . . O . . . . O O . . O .
O . . . . O . . O . O O . . O . . . . O . . . . O . . . . O O
O . . . . O O . . O . . O . O O . . O . . . . O . . . . O . .
O . . . O . . . . O O . . O . . O . O O . . O . . . . O . . .
O . . O . . . . O . . . . O O . . O . . O . O O . . O . . . .
. O . . . . . . . O . O . . . . O . O . O . . O . . O . . O O
. O . . . O O . . . . . . O . O . . . . O . O . O . . O . . O
. O . O . . O . . O O . . . . . . O . O . . . . O . O . O . .
. O . . O . . O . . O . . O O . . . . . . O . O . . . . O . O
. O . . O . O . O . . O . . O . . O O . . . . . . O . O . . .
. O . O . . . . O . O . O . . O . . O . . O O . . . . . . O .
. O . . . O . O . . . . O . O . O . . O . . O . . O O . . . .
. . O . . . . . O . . . . O . O . . O O . . . . . O O . O . O
. . O . O . O . . . . . O . . . . O . O . . O O . . . . . O O
. . O . . O O . O . O . . . . . O . . . . O . O . . O O . . .
. . O O . . . . . O O . O . O . . . . . O . . . . O . O . . O
. . O O . . O O . . . . . O O . O . O . . . . . O . . . . O .
. . O . . O . O . . O O . . . . . O O . O . O . . . . . O . .
. . O . O . . . . O . O . . O O . . . . . O O . O . O . . . .

oval

An oval of the block plan is a set of its points, no three of which are on a block. Here are all 7 ovals of maximum order of this block diagram (in each line an oval is represented by the number of its points):

  • Solution 1 (all ovals)
  7  11  15  23
  7  11  19  31
  7  15  27  31
  7  19  23  27
 11  15  19  27
 11  23  27  31
 15  19  23  31

literature

Web links

Individual evidence

  1. Edward Spence: A Complete Classification of Symmetric (31,10,3) Designs. In: Designs, Codes and Cryptography. Vol. 2, No. 2, 1992, pp. 127-136, doi : 10.1007 / BF00124892 .
  2. ^ Rudolf Mathon, Alexander Rosa : 2- (ν, κ, λ) Designs of Small Order. In: Charles J. Colbourn , Jeffrey H. Dinitz (Eds.): Handbook of Combinatorial Designs. 2nd edition. Chapman and Hall / CRC, Boca Raton FL et al. 2007, ISBN 978-1-4200-1054-1 , pp. 25-57.