(35,17,8) block plan
The (35,17,8) block diagram is a special symmetrical block diagram . In order to be able to construct it, this combinatorial problem had to be solved: an empty 35 × 35 matrix was filled with ones in such a way that each row of the matrix contains exactly 17 ones and any two rows have exactly 8 ones in the same column (not more and not less). That sounds relatively simple, but it is not trivial to solve. There are only certain combinations of parameters (like here v = 35, k = 17, λ = 8) for which such a construction is feasible. The smallest of these (v, k, λ) are listed in this overview .
designation
This symmetrical 2- (35,17,8) block diagram is called the Hadamard block diagram of the 9th order.
properties
This symmetrical block diagram has the parameters v = 35, k = 17, λ = 8 and thus the following properties:
- It consists of 35 blocks and 35 points.
- Each block contains exactly 17 points.
- Every 2 blocks intersect at exactly 8 points.
- Each point lies on exactly 17 blocks.
- Each 2 points are connected by exactly 8 blocks.
Existence and characterization
There are at least 108131 non-isomorphic 2- (35,17,8) block plans. Four of these solutions are:
- Solution 1 with the signature 35 · 64. It contains 595 ovals of the 2nd order.
- Solution 2 with the signature 34 x 16, 1 x 544. It contains 17 ovals of the 3rd order.
- Solution 3 ( dual to solution 4) with the signature 2 x 1, 7 x 4, 6 x 5, 9 x 6, 4 x 7, 4 x 8, 2 x 12, 1 x 14. It contains 1 oval of order 3.
- Solution 4 ( dual to solution 3) with the signature 1 x 2, 2 x 3, 2 x 4, 12 x 5, 4 x 6, 4 x 7, 4 x 8, 2 x 10, 2 x 11, 1 x 12 , 1 14. It contains 1 oval of order 3.
List of blocks
All the blocks of this block plan are listed here; See this illustration to understand this list
- Solution 1
1 2 3 4 6 7 11 17 18 19 23 25 26 28 29 32 34 2 3 4 5 7 8 12 18 19 20 24 26 27 29 30 33 35 1 3 4 5 6 8 9 13 19 20 21 25 27 28 30 31 34 2 4 5 6 7 9 10 14 20 21 22 26 28 29 31 32 35 1 3 5 6 7 8 10 11 15 21 22 23 27 29 30 32 33 2 4 6 7 8 9 11 12 16 22 23 24 28 30 31 33 34 3 5 7 8 9 10 12 13 17 23 24 25 29 31 32 34 35 1 4 6 8 9 10 11 13 14 18 24 25 26 30 32 33 35 1 2 5 7 9 10 11 12 14 15 19 25 26 27 31 33 34 2 3 6 8 10 11 12 13 15 16 20 26 27 28 32 34 35 1 3 4 7 9 11 12 13 14 16 17 21 27 28 29 33 35 1 2 4 5 8 10 12 13 14 15 17 18 22 28 29 30 34 2 3 5 6 9 11 13 14 15 16 18 19 23 29 30 31 35 1 3 4 6 7 10 12 14 15 16 17 19 20 24 30 31 32 2 4 5 7 8 11 13 15 16 17 18 20 21 25 31 32 33 3 5 6 8 9 12 14 16 17 18 19 21 22 26 32 33 34 4 6 7 9 10 13 15 17 18 19 20 22 23 27 33 34 35 1 5 7 8 10 11 14 16 18 19 20 21 23 24 28 34 35 1 2 6 8 9 11 12 15 17 19 20 21 22 24 25 29 35 1 2 3 7 9 10 12 13 16 18 20 21 22 23 25 26 30 2 3 4 8 10 11 13 14 17 19 21 22 23 24 26 27 31 3 4 5 9 11 12 14 15 18 20 22 23 24 25 27 28 32 4 5 6 10 12 13 15 16 19 21 23 24 25 26 28 29 33 5 6 7 11 13 14 16 17 20 22 24 25 26 27 29 30 34 6 7 8 12 14 15 17 18 21 23 25 26 27 28 30 31 35 1 7 8 9 13 15 16 18 19 22 24 26 27 28 29 31 32 2 8 9 10 14 16 17 19 20 23 25 27 28 29 30 32 33 3 9 10 11 15 17 18 20 21 24 26 28 29 30 31 33 34 4 10 11 12 16 18 19 21 22 25 27 29 30 31 32 34 35 1 5 11 12 13 17 19 20 22 23 26 28 30 31 32 33 35 1 2 6 12 13 14 18 20 21 23 24 27 29 31 32 33 34 2 3 7 13 14 15 19 21 22 24 25 28 30 32 33 34 35 1 3 4 8 14 15 16 20 22 23 25 26 29 31 33 34 35 1 2 4 5 9 15 16 17 21 23 24 26 27 30 32 34 35 1 2 3 5 6 10 16 17 18 22 24 25 27 28 31 33 35
- Solution 2
1 2 3 5 9 10 14 16 17 20 21 23 27 28 32 34 35 1 2 3 4 6 10 11 15 17 19 21 22 24 28 29 33 35 1 2 3 4 5 7 11 12 16 19 20 22 23 25 29 30 34 2 3 4 5 6 8 12 13 17 20 21 23 24 26 30 31 35 1 3 4 5 6 7 9 13 14 19 21 22 24 25 27 31 32 2 4 5 6 7 8 10 14 15 20 22 23 25 26 28 32 33 3 5 6 7 8 9 11 15 16 21 23 24 26 27 29 33 34 4 6 7 8 9 10 12 16 17 22 24 25 27 28 30 34 35 1 5 7 8 9 10 11 13 17 19 23 25 26 28 29 31 35 1 2 6 8 9 10 11 12 14 19 20 24 26 27 29 30 32 2 3 7 9 10 11 12 13 15 20 21 25 27 28 30 31 33 3 4 8 10 11 12 13 14 16 21 22 26 28 29 31 32 34 4 5 9 11 12 13 14 15 17 22 23 27 29 30 32 33 35 1 5 6 10 12 13 14 15 16 19 23 24 28 30 31 33 34 2 6 7 11 13 14 15 16 17 20 24 25 29 31 32 34 35 1 3 7 8 12 14 15 16 17 19 21 25 26 30 32 33 35 1 2 4 8 9 13 15 16 17 19 20 22 26 27 31 33 34 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 2 3 5 9 10 14 16 17 18 22 24 25 26 29 30 31 33 1 3 4 6 10 11 15 17 18 23 25 26 27 30 31 32 34 1 2 4 5 7 11 12 16 18 24 26 27 28 31 32 33 35 2 3 5 6 8 12 13 17 18 19 25 27 28 29 32 33 34 1 3 4 6 7 9 13 14 18 20 26 28 29 30 33 34 35 2 4 5 7 8 10 14 15 18 19 21 27 29 30 31 34 35 3 5 6 8 9 11 15 16 18 19 20 22 28 30 31 32 35 4 6 7 9 10 12 16 17 18 19 20 21 23 29 31 32 33 1 5 7 8 10 11 13 17 18 20 21 22 24 30 32 33 34 1 2 6 8 9 11 12 14 18 21 22 23 25 31 33 34 35 2 3 7 9 10 12 13 15 18 19 22 23 24 26 32 34 35 3 4 8 10 11 13 14 16 18 19 20 23 24 25 27 33 35 4 5 9 11 12 14 15 17 18 19 20 21 24 25 26 28 34 1 5 6 10 12 13 15 16 18 20 21 22 25 26 27 29 35 2 6 7 11 13 14 16 17 18 19 21 22 23 26 27 28 30 1 3 7 8 12 14 15 17 18 20 22 23 24 27 28 29 31 1 2 4 8 9 13 15 16 18 21 23 24 25 28 29 30 32
- Solution 3
1 3 4 5 6 7 13 14 15 20 23 26 29 30 32 34 35 2 3 8 13 16 18 20 21 23 24 26 27 29 31 32 33 34 1 2 3 4 8 9 10 11 12 14 16 27 30 31 32 34 35 1 3 4 5 8 9 13 15 16 18 19 21 22 24 25 32 35 1 4 5 6 8 9 11 12 14 18 20 21 23 24 26 28 31 1 5 6 7 8 9 11 13 15 16 17 27 28 29 31 32 33 1 6 7 11 14 18 19 21 22 24 25 27 29 30 31 32 34 2 3 4 5 6 8 12 13 14 19 22 25 28 29 31 33 34 3 4 5 6 10 11 16 17 18 19 20 25 26 30 31 32 33 3 9 11 12 13 14 15 17 18 19 21 23 29 30 31 33 35 3 5 6 7 9 10 12 16 19 22 23 24 26 27 29 31 35 3 5 8 10 11 14 15 17 18 24 25 26 27 28 29 34 35 1 2 4 6 8 10 15 17 21 22 24 26 29 30 31 33 35 1 3 5 7 8 10 12 17 19 21 23 24 28 30 32 33 34 1 4 6 10 12 13 16 17 18 19 20 21 27 28 29 34 35 2 3 4 6 9 11 15 17 19 21 22 23 26 27 28 32 34 6 9 10 12 13 14 15 16 18 22 24 26 28 30 32 33 34 2 4 5 7 11 13 14 16 19 21 24 26 27 28 30 33 35 4 7 8 12 13 17 18 22 23 25 26 27 28 30 31 32 35 1 2 5 10 11 12 13 14 16 17 21 22 23 25 26 29 32 2 4 5 7 9 11 12 17 18 20 22 24 29 32 33 34 35 4 7 8 9 10 12 14 15 19 20 21 25 26 27 29 32 33 1 2 5 9 12 13 15 17 19 20 24 25 26 27 30 31 34 2 4 5 7 9 10 15 16 18 21 23 25 28 29 30 31 34 4 7 8 10 11 13 14 15 16 17 19 20 22 23 24 31 34 1 2 5 10 14 15 18 19 20 22 23 27 28 31 32 33 35 2 3 6 7 9 10 13 14 17 20 21 24 25 28 31 32 35 5 6 8 9 10 11 13 20 21 22 23 25 27 30 33 34 35 1 2 6 7 8 9 14 16 17 18 19 23 25 26 33 34 35 1 3 7 11 12 15 16 20 21 22 25 26 28 31 33 34 35 2 3 5 6 7 8 12 14 15 16 17 18 20 21 22 27 30 1 2 3 4 6 7 10 11 12 13 15 18 23 24 25 27 33 2 6 8 11 12 15 16 19 20 23 24 25 28 29 30 32 35 1 2 3 7 8 9 10 11 13 18 19 20 22 26 28 29 30 1 3 4 9 14 16 17 20 22 23 24 25 27 28 29 30 33
- Solution 4
1 3 4 5 6 7 13 14 15 20 23 26 29 30 32 34 35 2 3 8 13 16 18 20 21 23 24 26 27 29 31 32 33 34 1 2 3 4 8 9 10 11 12 14 16 27 30 31 32 34 35 1 3 4 5 8 9 13 15 16 18 19 21 22 24 25 32 35 1 4 5 6 8 9 11 12 14 18 20 21 23 24 26 28 31 1 5 6 7 8 9 11 13 15 16 17 27 28 29 31 32 33 1 6 7 11 14 18 19 21 22 24 25 27 29 30 31 32 34 2 3 4 5 6 8 12 13 14 19 22 25 28 29 31 33 34 3 4 5 6 10 11 16 17 21 22 23 24 27 28 29 34 35 3 9 11 12 13 14 15 17 20 22 24 25 26 27 28 32 34 3 5 6 7 9 10 12 16 18 20 21 25 28 30 32 33 34 3 5 8 10 11 14 15 17 19 20 21 22 23 30 31 32 33 1 2 4 6 8 10 15 17 18 19 20 23 25 27 28 32 34 1 3 5 7 8 10 12 17 18 20 22 25 26 27 29 31 35 1 4 6 10 12 13 16 17 22 23 24 25 26 30 31 32 33 2 3 4 6 9 11 15 17 18 20 24 25 29 30 31 33 35 6 9 10 12 13 14 15 16 19 20 21 23 25 27 29 31 35 2 4 5 7 9 10 12 15 17 19 21 24 26 29 31 32 34 4 7 8 9 10 11 14 15 16 18 22 23 25 26 29 33 34 1 2 5 9 15 21 22 23 25 26 27 28 30 31 33 34 35 2 4 5 7 10 13 14 15 16 18 20 22 24 27 28 30 31 4 7 8 11 13 16 17 19 20 21 25 26 28 30 31 34 35 1 2 5 10 11 14 16 19 20 24 25 26 28 29 32 33 35 2 4 5 7 11 12 13 14 17 18 21 23 25 27 32 33 35 4 7 8 9 12 19 20 22 23 24 27 28 29 30 32 33 35 1 2 5 9 11 12 13 16 17 18 19 20 22 23 29 30 34 2 3 6 7 11 12 15 16 18 19 22 23 26 28 31 32 35 5 6 8 12 14 15 16 17 18 19 24 26 27 30 33 34 35 1 2 6 7 8 10 11 12 13 15 20 21 22 24 33 34 35 1 3 7 9 10 13 14 17 18 19 23 24 28 31 33 34 35 2 3 5 6 7 8 9 10 11 13 19 23 24 25 26 27 30 1 2 3 4 6 7 9 14 16 17 19 20 21 22 26 27 33 2 6 8 9 10 13 14 17 18 21 22 26 28 29 30 32 35 1 2 3 7 8 12 14 15 16 17 21 23 24 25 28 29 30 1 3 4 10 11 12 13 15 18 19 21 26 27 28 29 30 33
Incidence matrix
This is a representation of the incidence matrix of this block diagram; see this illustration to understand this matrix
- Solution 1
O O O O . O O . . . O . . . . . O O O . . . O . O O . O O . . O . O . . O O O O . O O . . . O . . . . . O O O . . . O . O O . O O . . O . O O . O O O O . O O . . . O . . . . . O O O . . . O . O O . O O . . O . . O . O O O O . O O . . . O . . . . . O O O . . . O . O O . O O . . O O . O . O O O O . O O . . . O . . . . . O O O . . . O . O O . O O . . . O . O . O O O O . O O . . . O . . . . . O O O . . . O . O O . O O . . . O . O . O O O O . O O . . . O . . . . . O O O . . . O . O O . O O O . . O . O . O O O O . O O . . . O . . . . . O O O . . . O . O O . O O O . . O . O . O O O O . O O . . . O . . . . . O O O . . . O . O O . . O O . . O . O . O O O O . O O . . . O . . . . . O O O . . . O . O O O . O O . . O . O . O O O O . O O . . . O . . . . . O O O . . . O . O O O . O O . . O . O . O O O O . O O . . . O . . . . . O O O . . . O . . O O . O O . . O . O . O O O O . O O . . . O . . . . . O O O . . . O O . O O . O O . . O . O . O O O O . O O . . . O . . . . . O O O . . . . O . O O . O O . . O . O . O O O O . O O . . . O . . . . . O O O . . . . O . O O . O O . . O . O . O O O O . O O . . . O . . . . . O O O . . . . O . O O . O O . . O . O . O O O O . O O . . . O . . . . . O O O O . . . O . O O . O O . . O . O . O O O O . O O . . . O . . . . . O O O O . . . O . O O . O O . . O . O . O O O O . O O . . . O . . . . . O O O O . . . O . O O . O O . . O . O . O O O O . O O . . . O . . . . . . O O O . . . O . O O . O O . . O . O . O O O O . O O . . . O . . . . . . O O O . . . O . O O . O O . . O . O . O O O O . O O . . . O . . . . . . O O O . . . O . O O . O O . . O . O . O O O O . O O . . . O . . . . . . O O O . . . O . O O . O O . . O . O . O O O O . O O . . . O . . . . . . O O O . . . O . O O . O O . . O . O . O O O O . O O . . . O O . . . . . O O O . . . O . O O . O O . . O . O . O O O O . O O . . . . O . . . . . O O O . . . O . O O . O O . . O . O . O O O O . O O . . . . O . . . . . O O O . . . O . O O . O O . . O . O . O O O O . O O . . . . O . . . . . O O O . . . O . O O . O O . . O . O . O O O O . O O O . . . O . . . . . O O O . . . O . O O . O O . . O . O . O O O O . O O O . . . O . . . . . O O O . . . O . O O . O O . . O . O . O O O O . . O O . . . O . . . . . O O O . . . O . O O . O O . . O . O . O O O O O . O O . . . O . . . . . O O O . . . O . O O . O O . . O . O . O O O O O . O O . . . O . . . . . O O O . . . O . O O . O O . . O . O . O O O O O . O O . . . O . . . . . O O O . . . O . O O . O O . . O . O . O
- Solution 2
O O O . O . . . O O . . . O . O O . . O O . O . . . O O . . . O . O O O O O O . O . . . O O . . . O . O . O . O O . O . . . O O . . . O . O O O O O O . O . . . O O . . . O . . O O . O O . O . . . O O . . . O . . O O O O O . O . . . O O . . . O . . O O . O O . O . . . O O . . . O O . O O O O O . O . . . O O . . . . O . O O . O O . O . . . O O . . . . O . O O O O O . O . . . O O . . . . O . O O . O O . O . . . O O . . . . O . O O O O O . O . . . O O . . . . O . O O . O O . O . . . O O . . . . O . O O O O O . O . . . O O . . . . O . O O . O O . O . . . O O O . . . O . O O O O O . O . . . O . O . . . O . O O . O O . O . . . O O O . . . O . O O O O O . O . . . . O O . . . O . O O . O O . O . . . . O O . . . O . O O O O O . O . . . . O O . . . O . O O . O O . O . . . . O O . . . O . O O O O O . O . . . . O O . . . O . O O . O O . O . . . . O O . . . O . O O O O O . O . . . . O O . . . O . O O . O O . O O . . . O O . . . O . O O O O O . . O . . . O O . . . O . O O . O O . . O . . . O O . . . O . O O O O O . . O . . . O O . . . O . O O . O O O . O . . . O O . . . O . O O O O . O . O . . . O O . . . O . O O . O O O . O . . . O O . . . O . O O O . O O . O . . . O O . . . O . O O . . . . . . . . . . . . . . . . . . . O O O O O O O O O O O O O O O O O . O O . O . . . O O . . . O . O O O . . . O . O O O . . O O O . O . . O . O O . O . . . O O . . . O . O O . . . . O . O O O . . O O O . O . O O . O O . O . . . O O . . . O . O . . . . . O . O O O . . O O O . O . O O . O O . O . . . O O . . . O O O . . . . . O . O O O . . O O O . O . O O . O O . O . . . O O . . . O . O . . . . . O . O O O . . O O O . O . O O . O O . O . . . O O . . O O . O . . . . . O . O O O . . O O . . O . O O . O O . O . . . O O . O O O . O . . . . . O . O O O . . O . . . O . O O . O O . O . . . O O O O O O . O . . . . . O . O O O . . O . . . O . O O . O O . O . . . O O . O O O . O . . . . . O . O O O . O O . . . O . O O . O O . O . . . O . . O O O . O . . . . . O . O O O . O O . . . O . O O . O O . O . . O O . . O O O . O . . . . . O . O O . . O O . . . O . O O . O O . O . O O O . . O O O . O . . . . . O . O . . . O O . . . O . O O . O O . O O O O O . . O O O . O . . . . . O . O . . . O O . . . O . O O . O O . O . O O O . . O O O . O . . . . . O . O . . . O O . . . O . O O . O O O O . O O O . . O O O . O . . . . . O . O . . . O O . . . O . O O . O O . O . O O O . . O O O . O . . . . O O . O . . . O O . . . O . O O . O . . O . O O O . . O O O . O . . .
- Solution 3
O . O O O O O . . . . . O O O . . . . O . . O . . O . . O O . O . O O . O O . . . . O . . . . O . . O . O . O O . O O . O O . O . O O O O . O O O O . . . O O O O O . O . O . . . . . . . . . . O . . O O O . O O O . O O O . . O O . . . O . O O . O O . O O . O O . . . . . . O . . O O . . O O O . O O . O O . O . . . O . O O . O O . O . O . . O . . . . O . . . O O O O O . O . O . O O O . . . . . . . . . O O O . O O O . . O . . . . O O . . . O . . O . . . O O . O O . O O . O . O O O O . O . . O O O O O . O . . . O O O . . . . O . . O . . O . . O O . O . O O . . . O O O O . . . O O . . . . O O O O O . . . . O O . . . O O O O . . . . O . . . . . O . O O O O O . O O O . O . O . . . . . O O O . O . O . . O . O O O . O O . O . . . O . . O . . O O O . O O . O . O . . . O . . O . O . . O . O O . . O O . O O . . . . . O O O O O O . . . . O O O O . O . O . O . O . . . . O . O . . . O O . O . O . . O O O . O . O O . O . O . O O . O . O . . . . O . O . O . O O . . . O . O . O O O . O . . O . O . . . O . O O . . O O O O O O . . . . . O O O . . . . O O . O O O . O . . O . O . . . O . O . O . O O O . . O O O . . . O . O . . . . . . O . . O O . O O O O O . O . . . O . O . O . O . O . O O O . . O . O O . O . . . O . O O . O . . O . O . . O . O O O . O . . O . O . . . O . . O O . . . O O . . . O O . . . O O . O O O O . O O O . . O O O . . O . . . . O O O O O . O O . . . O O O . O O . . O . . O . . . . O . O O . O . O . O O . . . . O O . O . O . O . . . . O . . O O O O . . . O . . O O O O . O . O O . . . O O O . . . O O O . O . . O O . . O O . . O . . . O . . O O . O . O . O O . . . O O O O . . O O . . O . . O . O O . O . O O . . . . O O . O . . O . O . O . . O O O O . . O . . . . O . . O O . O O . O O O O O . O O . O O O . . . . . . O . . O . O O . . O . . . . O . . . O O . . O O O . O O . . . O O . . O O O . O . O O . . O O . O O . . O O . . O . . O O . . O O . . O . . O O . . O . . . . O O . O O O O . O . . . . . . O O O O . O . O . . O . . O O O O O . . . O O O O . . . . O . O O O O . . . O . O O . . . . . . O O O O . O . . . O . . . O O . . O O . . . O O O . . O O . O . . O . O O O . O O . O O O O . . . O . O O O O O . O O O . . . . O . . O . . . . . O O O O . O O . . O O O O . O . . O . . . . O O O . O . . . . . O . . . O . . . O . O . . O O . . O O . . O O . . O O O . . O O O . O . . O O O O . . . O O O O O . O . . . . O O O . O . . . O . O O O . . . . . O . O O . . . . O . . . . O . O O . . O . O O O O . O O O O . . O . .
- Solution 4
O . O O O O O . . . . . O O O . . . . O . . O . . O . . O O . O . O O . O O . . . . O . . . . O . . O . O . O O . O O . O O . O . O O O O . O O O O . . . O O O O O . O . O . . . . . . . . . . O . . O O O . O O O . O O O . . O O . . . O . O O . O O . O O . O O . . . . . . O . . O O . . O O O . O O . O O . O . . . O . O O . O O . O . O . . O . . . . O . . . O O O O O . O . O . O O O . . . . . . . . . O O O . O O O . . O . . . . O O . . . O . . O . . . O O . O O . O O . O . O O O O . O . . O O O O O . O . . . O O O . . . . O . . O . . O . . O O . O . O O . . . O O O O . . . O O . . . . O O . . . O O O O . . O O O . . . . O O . . O . . . . . O . O O O O O . O . . O . O . O O O O O . . . O . O . . . O . O O O . O O . O . . . O . O . O O . . . O . . O . O . O O O . . . O . O . . O . O O . . O O . O . O O O O O . . . . . . O O O O . . O O . O . O . O . O . . . . O . O O O O . . O . O . O O . . . O . O . O . O . O . O O . O . O . . . . O O . O . O . . O O O . O . O . . . O O . . O . O . . . O . O O . . O O . . . . O O O O O . . . O O O O . . . O O O . O . . O . O . . . O . O O . O . . . O O . . . O O O . O . O . . . . . O . . O O . O O O O O . . O O O . O . O . O . O . O . . . O . O . O O . O . O O . O . . O . O . O . O . . O . O . . O . O O . O . . . . O . . O O O O O . . O O O . O . . . O O . O O . . O . . . O O . O O . . O . . . O . . . . . O . . . . . O O O . O O O O . O O . O O O . O . O O . O . . O . . O O O O . O . O . O . O . . O O . O O . . . . . . . O . . O O . . O . O . . O O . O O O . . . O O . O . O O . . O O O O . . O . . . . O O . . O . O . . O O . . . O O O . O O . . O O . O . O . O O . O . . . O O O O . . O O . . O . O . O . O . . . . O O . O . . . O . . O O O . . O . . . . . . O O . O O O . . O O O O . O O . O O O . . O . . . O . O O O . . O O O O O . O O . . . . . O O . . . O . . O O . . O O . . . O O . . O O . O O . . O O . . O . O . . O O . . O . . . . O O . O . . . O . O O O O O O . . . . O . O O . . O . . O O O O O . . . O O O . O O O O . O . . . . O O O . O . . . . . . . . O O O O . O . . . O . O O . . O O . . O O O . . . O O . . . O . . O . O O O . O O . O O O O O O O . O . . . . . O . . . O O O O O . . O . . . . . O O O O . O O . O . . . . O . O O . O O O O . . . O O . . . . . O . . . O . . . O . O O O . . O O . . O O . . O O . . . O . O O O . O . . O O O O . . . O O . . . O . O O O O . . . O . O O O . . O O O . . . . . O . O O . . . . . O O O O . O . . O O . O . . . . O O O O O . . O . .
Cyclical representation
There is a cyclical representation ( Singer cycle ) for solution 1 of this block diagram, it is isomorphic to the above list of blocks. Starting from the block shown, the remaining blocks of the block plan are obtained by cyclic permutation of the points it contains.
- Solution 1
1 2 3 4 6 7 11 17 18 19 23 25 26 28 29 32 34
oval
An oval of the block plan is a set of its points, no three of which are on a block. Here are examples of maximum order ovals from this block diagram (in each line an oval is represented by the number of its points):
- Solution 1
1 2
- Solution 2 (all ovals)
1 18 19 2 18 20 3 18 21 4 18 22 5 18 23 6 18 24 7 18 25 8 18 26 9 18 27 10 18 28 11 18 29 12 18 30 13 18 31 14 18 32 15 18 33 16 18 34 17 18 35
- Solution 3 (all ovals)
9 18 27
- Solution 4 (all ovals)
9 18 27
literature
- Thomas Beth , Dieter Jungnickel , Hanfried Lenz : Design Theory . 1st edition. BI Wissenschaftsverlag, Mannheim / Vienna / Zurich 1985, ISBN 3-411-01675-2 .
- Albrecht Beutelspacher : Introduction to Finite Geometry. Volume 1: Block Plans . BI Wissenschaftsverlag, Mannheim / Vienna / Zurich 1982, ISBN 3-411-01632-9 .
Individual evidence
- ^ Rudolf Mathon, Alexander Rosa : 2- (ν, κ, λ) Designs of Small Order. In: Charles J. Colbourn , Jeffrey H. Dinitz (Eds.): Handbook of Combinatorial Designs. 2nd edition. Chapman and Hall / CRC, Boca Raton FL et al. 2007, ISBN 978-1-4200-1054-1 , pp. 25-57.