(45,12,3) block plan

from Wikipedia, the free encyclopedia

The (45,12,3) block diagram is a special symmetrical block diagram . In order to be able to construct it, this combinatorial problem had to be solved: An empty 45 × 45 matrix was filled with ones in such a way that each row of the matrix contains exactly 12 ones and any two rows have exactly 3 ones in the same column (not more and not less). That sounds relatively simple, but it is not trivial to solve. There are only certain combinations of parameters (like here v = 45, k = 12, λ = 3) for which such a construction is feasible. The smallest of these (v, k, λ) are listed in this overview .

designation

This symmetrical 2- (45,12,3) block diagram is called a 9th order triplane .

properties

This symmetrical block diagram has the parameters v = 45, k = 12, λ = 3 and thus the following properties:

  • It consists of 45 blocks and 45 points.
  • Each block contains exactly 12 points.
  • Every 2 blocks intersect in exactly 3 points.
  • Each point lies on exactly 12 blocks.
  • Each 2 points are connected by exactly 3 blocks.

Existence and characterization

There are at least 3752 non-isomorphic 2- (45,12,3) block plans. One of these solutions is:

  • Solution 1 with the signature 12 x 1, 6 x 2, 4 x 3, 12 x 4, 6 x 11, 1 x 12, 4 x 15. It contains 1140 ovals of the 4th order.

List of blocks

All the blocks of this block plan are listed here; See this illustration to understand this list

  • Solution 1
  2   3   4   5   6   7   8   9  10  11  12  13
  1   3   4   5  14  15  16  17  18  19  20  21
  1   2   4   5  22  23  24  25  26  27  28  29
  1   2   3   5  30  31  32  33  34  35  36  37
  1   2   3   4  38  39  40  41  42  43  44  45
  1   7   8   9  14  15  22  23  30  31  38  39
  1   6   8   9  16  17  24  25  32  33  40  41
  1   6   7   9  18  19  26  27  34  35  42  43
  1   6   7   8  20  21  28  29  36  37  44  45
  1  11  12  13  14  15  24  25  34  35  44  45
  1  10  12  13  16  17  22  23  36  37  42  43
  1  10  11  13  18  19  28  29  30  31  40  41
  1  10  11  12  20  21  26  27  32  33  38  39
  2   6  10  15  16  18  22  28  32  34  38  44
  2   6  10  14  17  19  23  29  33  35  39  45
  2   7  11  14  18  20  23  24  32  36  40  42
  2   7  11  15  19  21  22  25  33  37  41  43
  2   8  12  14  16  20  26  28  30  35  41  43
  2   8  12  15  17  21  27  29  31  34  40  42
  2   9  13  16  18  21  24  27  30  37  39  45
  2   9  13  17  19  20  25  26  31  36  38  44
  3   6  11  14  17  24  27  28  31  37  38  43
  3   6  11  15  16  25  26  29  30  36  39  42
  3   7  10  16  20  22  25  27  31  35  40  45
  3   7  10  17  21  23  24  26  30  34  41  44
  3   8  13  18  21  23  25  28  33  35  38  42
  3   8  13  19  20  22  24  29  32  34  39  43
  3   9  12  14  18  22  26  29  33  37  40  44
  3   9  12  15  19  23  27  28  32  36  41  45
  4   6  12  18  20  23  25  31  34  37  39  41
  4   6  12  19  21  22  24  30  35  36  38  40
  4   7  13  14  16  27  29  33  34  36  38  41
  4   7  13  15  17  26  28  32  35  37  39  40
  4   8  10  14  19  25  27  30  32  37  42  44
  4   8  10  15  18  24  26  31  33  36  43  45
  4   9  11  16  21  23  29  31  32  35  43  44
  4   9  11  17  20  22  28  30  33  34  42  45
  5   6  13  14  21  22  26  31  32  41  42  45
  5   6  13  15  20  23  27  30  33  40  43  44
  5   7  12  16  19  24  28  31  33  39  42  44
  5   7  12  17  18  25  29  30  32  38  43  45
  5   8  11  16  19  23  26  34  37  38  40  45
  5   8  11  17  18  22  27  35  36  39  41  44
  5   9  10  14  21  25  28  34  36  39  40  43
  5   9  10  15  20  24  29  35  37  38  41  42

Incidence matrix

This is a representation of the incidence matrix of this block diagram; see this illustration to understand this matrix

  • Solution 1
. O O O O O O O O O O O O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
O . O O O . . . . . . . . O O O O O O O O . . . . . . . . . . . . . . . . . . . . . . . .
O O . O O . . . . . . . . . . . . . . . . O O O O O O O O . . . . . . . . . . . . . . . .
O O O . O . . . . . . . . . . . . . . . . . . . . . . . . O O O O O O O O . . . . . . . .
O O O O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . O O O O O O O O
O . . . . . O O O . . . . O O . . . . . . O O . . . . . . O O . . . . . . O O . . . . . .
O . . . . O . O O . . . . . . O O . . . . . . O O . . . . . . O O . . . . . . O O . . . .
O . . . . O O . O . . . . . . . . O O . . . . . . O O . . . . . . O O . . . . . . O O . .
O . . . . O O O . . . . . . . . . . . O O . . . . . . O O . . . . . . O O . . . . . . O O
O . . . . . . . . . O O O O O . . . . . . . . O O . . . . . . . . O O . . . . . . . . O O
O . . . . . . . . O . O O . . O O . . . . O O . . . . . . . . . . . . O O . . . . O O . .
O . . . . . . . . O O . O . . . . O O . . . . . . . . O O O O . . . . . . . . O O . . . .
O . . . . . . . . O O O . . . . . . . O O . . . . O O . . . . O O . . . . O O . . . . . .
. O . . . O . . . O . . . . O O . O . . . O . . . . . O . . . O . O . . . O . . . . . O .
. O . . . O . . . O . . . O . . O . O . . . O . . . . . O . . . O . O . . . O . . . . . O
. O . . . . O . . . O . . O . . . O . O . . O O . . . . . . . O . . . O . . . O . O . . .
. O . . . . O . . . O . . . O . . . O . O O . . O . . . . . . . O . . . O . . . O . O . .
. O . . . . . O . . . O . O . O . . . O . . . . . O . O . O . . . . O . . . . . O . O . .
. O . . . . . O . . . O . . O . O . . . O . . . . . O . O . O . . O . . . . . O . O . . .
. O . . . . . . O . . . O . . O . O . . O . . O . . O . . O . . . . . . O . O . . . . . O
. O . . . . . . O . . . O . . . O . O O . . . . O O . . . . O . . . . O . O . . . . . O .
. . O . . O . . . . O . . O . . O . . . . . . O . . O O . . O . . . . . O O . . . . O . .
. . O . . O . . . . O . . . O O . . . . . . . . O O . . O O . . . . . O . . O . . O . . .
. . O . . . O . . O . . . . . O . . . O . O . . O . O . . . O . . . O . . . . O . . . . O
. . O . . . O . . O . . . . . . O . . . O . O O . O . . . O . . . O . . . . . . O . . O .
. . O . . . . O . . . . O . . . . O . . O . O . O . . O . . . . O . O . . O . . . O . . .
. . O . . . . O . . . . O . . . . . O O . O . O . . . . O . . O . O . . . . O . . . O . .
. . O . . . . . O . . O . O . . . O . . . O . . . O . . O . . . O . . . O . . O . . . O .
. . O . . . . . O . . O . . O . . . O . . . O . . . O O . . . O . . . O . . . . O . . . O
. . . O . O . . . . . O . . . . . O . O . . O . O . . . . . O . . O . . O . O . O . . . .
. . . O . O . . . . . O . . . . . . O . O O . O . . . . . O . . . . O O . O . O . . . . .
. . . O . . O . . . . . O O . O . . . . . . . . . . O . O . . . O O . O . O . . O . . . .
. . . O . . O . . . . . O . O . O . . . . . . . . O . O . . . O . . O . O . O O . . . . .
. . . O . . . O . O . . . O . . . . O . . . . . O . O . . O . O . . . . O . . . . O . O .
. . . O . . . O . O . . . . O . . O . . . . . O . O . . . . O . O . . O . . . . . . O . O
. . . O . . . . O . O . . . . O . . . . O . O . . . . . O . O O . . O . . . . . . . O O .
. . . O . . . . O . O . . . . . O . . O . O . . . . . O . O . . O O . . . . . . . O . . O
. . . . O O . . . . . . O O . . . . . . O O . . . O . . . . O O . . . . . . . . O O . . O
. . . . O O . . . . . . O . O . . . . O . . O . . . O . . O . . O . . . . . . O . . O O .
. . . . O . O . . . . O . . . O . . O . . . . O . . . O . . O . O . . . . . O . . O . O .
. . . . O . O . . . . O . . . . O O . . . . . . O . . . O O . O . . . . . O . . . . O . O
. . . . O . . O . . O . . . . O . . O . . . O . . O . . . . . . . O . . O O . O . . . . O
. . . . O . . O . . O . . . . . O O . . . O . . . . O . . . . . . . O O . . O . O . . O .
. . . . O . . . O O . . . O . . . . . . O . . . O . . O . . . . . O . O . . O O . . O . .
. . . . O . . . O O . . . . O . . . . O . . . O . . . . O . . . . . O . O O . . O O . . .

oval

An oval of the block plan is a set of its points, no three of which are on a block. Here is an example of a maximum order oval from this block diagram:

  • Solution 1
  1   2   7  16

literature

Individual evidence

  1. ^ Rudolf Mathon, Alexander Rosa : 2- (ν, κ, λ) Designs of Small Order. In: Charles J. Colbourn , Jeffrey H. Dinitz (Eds.): Handbook of Combinatorial Designs. 2nd edition. Chapman and Hall / CRC, Boca Raton FL et al. 2007, ISBN 978-1-4200-1054-1 , pp. 25-57.