The Abel – Plana sum formula  is a sum formula that was independently discovered by Niels Henrik Abel  (1823) and Giovanni Antonio Amedeo Plana  (1820). It says that
  
    
      
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        f 
        ( 
        n 
        ) 
        = 
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        f 
        ( 
        t 
        ) 
         
        
          d 
         
        t 
        + 
        
          
            1 
            2 
           
         
         
        f 
        ( 
        0 
        ) 
        + 
        i 
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          
            
              f 
              ( 
              i 
              t 
              ) 
              - 
              f 
              ( 
              - 
              i 
              t 
              ) 
             
            
              
                
                  e 
                 
                
                  2 
                  π 
                  t 
                 
               
              - 
              1 
             
           
         
         
        
          d 
         
        t 
       
     
    {\ displaystyle \ sum \ limits _ {n = 0} ^ {\ infty} f (n) = \ int \ limits _ {0} ^ {\ infty} f (t) \, \ mathrm {d} t + {\ frac {1} {2}} \, f (0) + i \ int \ limits _ {0} ^ {\ infty} {\ frac {f (it) -f (-it)} {\ mathrm {e} ^ {2 \ pi t} -1}} \, \ mathrm {d} t} 
   
  
is. It applies to functions f  which are holomorphic  in the half-plane and whose magnitude increases in a suitable manner; z. B. the assumption is sufficient
  
    
      
        
          R. 
          e 
         
         
        z 
        > 
        0 
       
     
    {\ displaystyle \ mathrm {Re} \, z> 0} 
   
    
  
    
      
        
          | 
         
        f 
        ( 
        z 
        ) 
        
          | 
         
        < 
        
          
            C. 
            
              
                | 
               
              z 
              
                
                  | 
                 
                
                  1 
                  + 
                  ϵ 
                 
               
             
           
         
       
     
    {\ displaystyle | f (z) | <{\ frac {C} {| z | ^ {1+ \ epsilon}}}} 
   
  
in this area for suitable constants C  , ε> 0. Frank WJ Olver  has even shown that the formula is valid under much weaker conditions.
The Hurwitz zeta function  can be used as an example :
  
    
      
        ζ 
        ( 
        s 
        , 
        z 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          
            1 
            
              ( 
              n 
              + 
              z 
              
                ) 
                
                  s 
                 
               
             
           
         
        = 
        
          
            
              z 
              
                1 
                - 
                s 
               
             
            
              s 
              - 
              1 
             
           
         
        + 
        
          
            1 
            
              2 
              
                z 
                
                  s 
                 
               
             
           
         
        + 
        2 
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          
            
              sin 
               
              
                ( 
                
                  s 
                  arctan 
                   
                  
                    
                      t 
                      z 
                     
                   
                 
                ) 
               
             
            
              ( 
              
                
                  e 
                 
                
                  2 
                  π 
                  t 
                 
               
              - 
              1 
              ) 
              
                
                  ( 
                  
                    z 
                    
                      2 
                     
                   
                  + 
                  
                    t 
                    
                      2 
                     
                   
                  ) 
                 
                
                  
                    s 
                    2 
                   
                 
               
             
           
         
         
        
          d 
         
        t 
        . 
       
     
    {\ displaystyle \ zeta (s, z) = \ sum \ limits _ {n = 0} ^ {\ infty} {\ frac {1} {(n + z) ^ {s}}} = {\ frac {z ^ {1-s}} {s-1}} + {\ frac {1} {2z ^ {s}}} + 2 \ int \ limits _ {0} ^ {\ infty} {\ frac {\ sin \ ! \ left (s \ arctan {\ frac {t} {z}} \ right)} {(\ mathrm {e} ^ {2 \ pi t} -1) {(z ^ {2} + t ^ {2 })} ^ {\ frac {s} {2}}}} \, \ mathrm {d} t.} 
   
  
Abel also gave the following variant for alternating sums:
  
    
      
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        ( 
        - 
        1 
        
          ) 
          
            n 
           
         
        f 
        ( 
        n 
        ) 
        = 
        
          
            1 
            2 
           
         
         
        f 
        ( 
        0 
        ) 
        + 
        i 
        
          ∫ 
          
            0 
           
          
            ∞ 
           
         
        
          
            
              f 
              ( 
              i 
              t 
              ) 
              - 
              f 
              ( 
              - 
              i 
              t 
              ) 
             
            
              2 
               
              sinh 
               
              ( 
              π 
              t 
              ) 
             
           
         
         
        
          d 
         
        t 
        . 
       
     
    {\ displaystyle \ sum \ limits _ {n = 0} ^ {\ infty} (- 1) ^ {n} f (n) = {\ frac {1} {2}} \, f (0) + i \ int \ limits _ {0} ^ {\ infty} {\ frac {f (it) -f (-it)} {2 \, \ sinh (\ pi t)}} \, \ mathrm {d} t.} 
   
  
See also  
Individual evidence  
^    Abel, NH: Solution de quelquesproblemèmes à l'aide d'intégrales définies  . Magazin for Naturvidenskaberne, Argang I, Bind2, Christina, 1823 
 
^    Olver, Frank WJ: Asymptotics and special functions. Reprint of the 1974 original   . AKP Classics. AK Peters, Ltd., Wellesley, MA, 1997. ISBN 978-1-56881-069-0  
 
 
 
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">