The Hurwitz zeta function (after Adolf Hurwitz ) is one of the many known zeta functions that plays an important role in analytic number theory , a branch of mathematics .
The formal definition of complex is


The series converges absolutely and can be expanded to a meromorphic function for all
The Riemann zeta function is then
Analytical continuation
The Hurwitz zeta function may be a function meromorphic continued to be so for all complex is defined. At is a simple pole with residual 1.


It then applies
![{\ displaystyle \ lim _ {s \ to 1} \ left [\ zeta (s, q) - {\ frac {1} {s-1}} \ right] = {\ frac {- \ Gamma '(q) } {\ Gamma (q)}} = - \ psi (q)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1a8c060c6ab7fbd1478eaf1383071b2fae825439)
using the gamma function
and the digamma function
.
Series representations
Helmut Hasse found the series representation in 1930

for and .


Laurent development
The Laurent development around is:


with . are the generalized Stieltjes constants :



For

with .

Integral representation
The integral representation is

where and
Hurwitz formula
Hurwitz's formula is a representation of the function for and you reads:


![{\ displaystyle \ zeta (1-s, x) = {\ frac {1} {2s}} \ left [e ^ {- \ mathrm {i} \ pi s / 2} \ beta (x; s) + e ^ {\ mathrm {i} \ pi s / 2} \ beta (1-x; s) \ right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7618fc3a8a3bd1ced1a9774ae1435a8ee621c3fd)
in which

It denotes the polylogarithm .

Functional equation
For everyone and applies



values
zeropoint
Since for and results in the Riemann zeta function or this multiplied by a simple function of , this leads to the complicated zero point calculation of the Riemann zeta function with the Riemann conjecture .



For these , the Hurwitz zeta function has no zeros with a real part greater than or equal to 1.

For and , on the other hand, there are zeros for every stiffener with a positive-real . This was proved for rational and non-algebraic-irrational ones by Davenport and Heilbronn ; for algebraic irrational by Cassels .






Rational arguments
The Hurwitz zeta function occurs in connection with the Euler polynomials :


and

Furthermore applies
![{\ displaystyle \ zeta \ left (s, {\ frac {2p-1} {2q}} \ right) = 2 (2q) ^ {s-1} \ sum _ {k = 1} ^ {q} \ left [C_ {s} \ left ({\ frac {k} {q}} \ right) \ cos \ left ({\ frac {(2p-1) \ pi k} {q}} \ right) + S_ {s } \ left ({\ frac {k} {q}} \ right) \ sin \ left ({\ frac {(2p-1) \ pi k} {q}} \ right) \ right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7ac4d1c422f93bd76554ea0986c83b501485ef28)
with . And are defined with the legendary Chi function as follows :




or.

Further
The following applies (selection):







( Riemann zeta function , Catalan's constant )
Derivatives
It applies

with as well as and .



The derivatives after result in


for and using the Pochhammer symbol .


Relationships with other functions
Bernoulli polynomials
The function defined in the Hurwitz formula section generalizes the Bernoulli polynomials :

![{\ displaystyle B_ {n} (x) = - \ mathrm {Re} \ left [(- \ mathrm {i}) ^ {n} \ beta (x; n) \ right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bf8e1b31a1773a69cf13670620aaf37e3a228aa7)
Alternatively, you can say that

For that results


Jacobian theta function
With , the Jacobian theta function applies

![{\ displaystyle \ int \ limits _ {0} ^ {\ infty} \ left [\ vartheta (z, \ mathrm {i} t) -1 \ right] t ^ {s / 2} {\ frac {\ mathrm { d} t} {t}} = \ pi ^ {- (1-s) / 2} \ Gamma \ left ({\ frac {1-s} {2}} \ right) \ left [\ zeta (1- s, z) + \ zeta (1-s, 1-z) \ right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/77071b8d310ded11644273b78400c320e9fdf6f8)
where and .


Is whole, this simplifies itself too

![{\ displaystyle \ int \ limits _ {0} ^ {\ infty} \ left [\ vartheta (n, \ mathrm {i} t) -1 \ right] t ^ {s / 2} {\ frac {\ mathrm { d} t} {t}} = 2 \ \ pi ^ {- (1-s) / 2} \ \ Gamma \ left ({\ frac {1-s} {2}} \ right) \ zeta (1- s) = 2 \ \ pi ^ {- s / 2} \ \ Gamma \ left ({\ frac {s} {2}} \ right) \ zeta (s).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/def92c652b655e11e871a60624dfdbeef0b6c673)
( with one argument stands for the Riemann zeta function )

Polygamma function
The Hurwitz zeta function generalizes the polygamma function to non-whole orders :


with the Euler-Mascheroni constant .

Occur
Hurwitz's zeta functions are used in various places, not just in number theory . It occurs in fractals and dynamic systems as well as in Zipf's law .
In particle physics , it occurs in a formula by Julian Schwinger , which gives an exact result for the pair formation rate of electrons in fields described in the Dirac equation .
Special cases and generalizations
A generalization of the Hurwitz zeta function offers
-
,
so that

This function is called Lerch's zeta function .
The Hurwitz zeta function can be expressed by the generalized hypergeometric function :

With
In addition, with Meijer's G function :

with .

Literature and web links
- Jonathan Sondow, Eric W. Weisstein: Hurwitz Zeta Function on MathWorld and in functions.wolfram.com (English)
-
Milton Abramowitz , Irene A. Stegun : Handbook of Mathematical Functions . Dover Publications, New York 1964, ISBN 0-486-61272-4 . (See paragraph 6.4.10 )
- Victor S. Adamchik: Derivatives of the Hurwitz Zeta Function for Rational Arguments . In: Journal of Computational and Applied Mathematics . Volume 100, 1998, pp. 201-206.
- Necdet Batit: New inequalities for the Hurwitz zeta function (PDF; 115 kB). In: Proc. Indian Acad. Sci. (Math. Sci.) Vol. 118, No. 4, Nov. 2008, pp. 495-503
- Johan Andersson: Mean Value Properties of the Hurwitz Zeta Function . In: Math. Scand. Volume 71, 1992, pp. 295-300
Individual evidence
-
↑ Helmut Hasse: A summation method for the Riemann ζ series In: Mathematische Zeitschrift. Volume 32, 1930, pp. 458-464.
-
↑ http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/Zeta2/06/03/01/01/0001/
-
↑ Eric W. Weisstein : Hurwitz's Formula . In: MathWorld (English).
-
^ H. Davenport and H. Heilbronn: On the zeros of certain Dirichlet series . In: Journal of the London Mathematical Society. Volume 11, 1936, pp. 181-185
-
^ JWS Cassels: Footnote to a note of Davenport and Heilbronn . In: Journal of the London Mathematical Society. Volume 36, 1961, pp. 177-184
-
↑ Đurđe Cvijovic and Jacek Klinowski: Values of the Legendre chi and Hurwitz zeta functions at rational arguments . In: Mathematics of Computation . Volume 68, 1999, pp. 1623-1630.
-
↑ http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/Zeta2/03/ShowAll.html
-
↑ http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/Zeta2/20/02/01/01/0001/
-
↑ http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/Zeta2/20/02/02/01/0001/
-
↑ Oliver Espinosa and Victor H. Moll: A Generalized Polygamma Function on arXiv.org e-Print archive 2003.
-
^ J. Schwinger: On gauge invariance and vacuum polarization . In: Physical Review . Volume 82, 1951, pp. 664-679.
-
↑ http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/Zeta2/26/01/02/01/
-
↑ http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/Zeta2/26/02/01/01/