The Lerch zeta function (after Mathias Lerch ) is a very general zeta function . Very many series of reciprocal powers (including the Hurwitz zeta function and the polylogarithm ) can be represented as a special case of this function.
definition
The two functions

and

are called Lerch's zeta function . The relationship between the two is through

given.
Special cases and special values






The following special cases also apply (selection):








Furthermore is
![{\ displaystyle {\ begin {aligned} & \ Phi (-1,2, {\ tfrac {1} {2}}) & = & \; 4 \, G \\ & {\ frac {\ partial \ Phi} {\ partial s}} (- 1, -1,1) & = & \; \ log \ left ({\ frac {A ^ {3}} {{\ sqrt [{3}] {2}} \, {\ sqrt [{4}] {\ mathrm {e}}}}} \ right) \\ & {\ frac {\ partial \ Phi} {\ partial s}} (- 1, -2,1) & = & \; {\ frac {7 \, \ zeta (3)} {4 \, \ pi ^ {2}}} \\ & {\ frac {\ partial \ Phi} {\ partial s}} (- 1, -1, {\ tfrac {1} {2}}) & = & \; {\ frac {G} {\ pi}} \ end {aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/604103b7e47a2180ac4304d0b2d034077e64001f)
with the Catalan constant
, the Glaisher-Kinkelin constant
and the Apéry constant of
the Riemann zeta function.
More formulas
Integral representations
One possible integral representation is
-
For
The curve integral

with must not contain the points .


Furthermore is

for and .


Likewise is

for .

Series representations
A series representation for the transcendent lark is

It applies to all and complex with ; compare the series representation of the Hurwitz zeta function .


If is positive and whole, then applies

![{\ displaystyle \ Phi (z, n, a) = z ^ {- a} \ left \ {\ sum _ {{k = 0} \ atop k \ neq n-1} ^ {\ infty} \ zeta (nk , a) {\ frac {\ log ^ {k} z} {k!}} + \ left [\ Psi (n) - \ Psi (a) - \ log (- \ log z) \ right] {\ frac {\ log ^ {n-1} z} {(n-1)!}} \ right \}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9b54a52635ff1519524a9ae99a5060e01582e8f1)
A Taylor series of the third variable is through

given for using the Pochhammer symbol .

The following applies in the
limit value
-
.
The special case has the following series:


for .

The asymptotic expansion for is given by

![{\ displaystyle \ Phi (z, s, a) = z ^ {- a} \, \ Gamma (1-s) \ sum _ {k = - \ infty} ^ {\ infty} \ left [2 \, k \, \ pi \, i- \ log z \ right] ^ {s-1} \ mathrm {e} ^ {2 \, k \, \ pi \, a \, i}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cb3db0d7fc935e69ada0183b6c210d447063a525)
for and

![{\ displaystyle \ Phi (-z, s, a) = z ^ {- a} \, \ Gamma (1-s) \ sum _ {k = - \ infty} ^ {\ infty} \ left [(2 \ , k + 1) \ pi \, i- \ log z \ right] ^ {s-1} \ mathrm {e} ^ {(2 \, k + 1) \ pi \, a \, i}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a9b2d27d83c654da931d25e9d408a9edc0617f42)
if .

Using the incomplete gamma function holds

with and .


Identities and other formulas



Furthermore applies to the integral representation with or


and
-
.
literature
-
Mathias Lerch : Démonstration élémentaire de la formule :, L'Enseignement Mathématique 5 (1903): pp. 450–453

- M. Jackson: On Lerch's transcendent and the basic bilateral hypergeometric series
, J. London Math. Soc. 25 (3), 1950: pp. 189-196
- Jesús Guillera, Jonathan Sondow: Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent . In: Ramanujan J. Volume 16, Number 3, 2008, pages 247-270; see. in arxiv
- Antanas Laurinčikas and Ramūnas Garunkštis: The Lerch zeta-function , Dordrecht: Kluwer Academic Publishers, 2002, ISBN 978-1-4020-1014-9 online
Web links
Individual evidence
-
↑ http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/LerchPhi/03/ShowAll.html
-
↑ Guillera, Sondow 2008, Theorem 3.1 (see Ref.)