The Catalan constant , commonly referred to as, is a mathematical constant . She is the value of the series
G
{\ displaystyle G}
∑
n
=
0
∞
(
-
1
)
n
(
2
n
+
1
)
2
=
1
-
1
3
2
+
1
5
2
-
1
7th
2
+
⋯
,
{\ displaystyle \ sum _ {n = 0} ^ {\ infty} {\ frac {(-1) ^ {n}} {(2n + 1) ^ {2}}} = 1 - {\ frac {1} {3 ^ {2}}} + {\ frac {1} {5 ^ {2}}} - {\ frac {1} {7 ^ {2}}} + \ cdots,}
thus the value of the Dirichlet beta function at position 2. The constant is named after Eugène Catalan . Their irrationality is presumed, but is still unproven today. It is known that an infinite number of the numbers must be irrational, with at least one of and .
β
(
2
)
{\ displaystyle \ beta (2)}
β
(
2
k
)
,
k
=
1
,
2
,
3
,
...
{\ displaystyle \ beta (2k), k = 1,2,3, \ ldots}
β
(
2
)
,
β
(
4th
)
,
β
(
6th
)
,
β
(
8th
)
,
β
(
10
)
,
β
(
12
)
{\ displaystyle \ beta (2), \ beta (4), \ beta (6), \ beta (8), \ beta (10), \ beta (12)}
β
(
14th
)
{\ displaystyle \ beta (14)}
History and title
Catalan referred to this constant in a work from 1867 and gave numerous integral and series representations for it.
G
{\ displaystyle G}
value
Is an approximation
G
=
0
,
91596
55941
77219
01505
46035
14932
38411
07741
49374
28167
...
{\ displaystyle G = 0.91596 \ 55941 \ 77219 \ 01505 \ 46035 \ 14932 \ 38411 \ 07741 \ 49374 \ 28167 \ \ dots}
(Follow A006752 in OEIS )
Currently (February 28, 2020), according to a calculation by Seungmin Kim from July 16, 2019, 600,000,000,000 decimal places are known.
Further representations
There is an abundance of other representations, a fraction of which are given below:
Integral representations
G
=
-
∫
0
1
ln
t
1
+
t
2
d
t
{\ displaystyle G = - \ int _ {0} ^ {1} {\ frac {\ ln t} {1 + t ^ {2}}} \, {\ rm {d}} t}
G
=
∫
0
1
arctan
t
t
d
t
{\ displaystyle G = \ int _ {0} ^ {1} {\ frac {\ arctan t} {t}} \, {\ rm {d}} t}
G
=
∫
0
1
∫
0
1
1
1
+
x
2
y
2
d
x
d
y
{\ displaystyle G = \ int _ {0} ^ {1} \! \! \ int _ {0} ^ {1} {\ frac {1} {1 + x ^ {2} y ^ {2}}} \, {\ rm {d}} x \, {\ rm {d}} y}
Series representations
According to S. Ramanujan :
G
=
π
8th
ln
(
2
+
3
)
+
3
8th
∑
n
=
0
∞
1
(
2
n
+
1
)
2
(
2
n
n
)
.
{\ displaystyle G = {\ frac {\ pi} {8}} \ ln \ left (2 + {\ sqrt {3}} \ right) + {\ frac {3} {8}} \ sum _ {n = 0} ^ {\ infty} {\ frac {1} {(2n + 1) ^ {2} {\ binom {2n} {n}}}} \.}
Another series contains the Riemann zeta function :
G
=
1
16
∑
n
=
1
∞
(
n
+
1
)
3
n
-
1
4th
n
ζ
(
n
+
2
)
.
{\ displaystyle G = {\ frac {1} {16}} \ sum _ {n = 1} ^ {\ infty} (n + 1) {\ frac {3 ^ {n} -1} {4 ^ {n }}} \ zeta (n + 2) \.}
The following sum converges very quickly ( Alexandru Lupaş 2000):
G
=
1
64
∑
n
=
1
∞
(
-
1
)
n
+
1
⋅
2
8th
n
⋅
(
40
n
2
-
24
n
+
3
)
⋅
(
2
n
)
!
3
⋅
n
!
2
n
3
⋅
(
2
n
-
1
)
⋅
(
4th
n
)
!
2
.
{\ displaystyle G = {\ frac {1} {64}} \ sum _ {n = 1} ^ {\ infty} {\ frac {(-1) ^ {n + 1} \ cdot 2 ^ {8n} \ cdot (40n ^ {2} -24n + 3) \ cdot (2n)! ^ {3} \ cdot n! ^ {2}} {n ^ {3} \ cdot (2n-1) \ cdot (4n)! ^ {2}}} \.}
According to Jesus Guillera , the following series are valid, which converge faster than the series by Lupaş :
G
=
1
2
∑
k
=
0
∞
(
-
8th
)
k
(
3
k
+
2
)
(
2
k
+
1
)
3
(
2
k
k
)
3
{\ displaystyle G = {\ frac {1} {2}} \ sum _ {k = 0} ^ {\ infty} {\ frac {(-8) ^ {k} (3k + 2)} {(2k + 1) ^ {3} {\ binom {2k} {k}} ^ {3}}}}
,
G
=
-
1
1024
∑
k
=
1
∞
(
-
4096
)
k
(
45136
k
4th
-
57184
k
3
+
21240
k
2
-
3160
k
+
165
)
k
3
(
2
k
-
1
)
3
(
(
2
k
)
!
6th
(
3
k
)
!
3
k
!
3
(
6th
k
)
!
3
)
{\ displaystyle G = - {\ frac {1} {1024}} \ sum _ {k = 1} ^ {\ infty} {\ frac {(-4096) ^ {k} \ left (45136k ^ {4} - 57184k ^ {3} + 21240k ^ {2} -3160k + 165 \ right)} {k ^ {3} (2k-1) ^ {3}}} \ left ({\ frac {(2k)! ^ {6 } (3k)! ^ {3}} {k! ^ {3} (6k)! ^ {3}}} \ right)}
.
According to Pilehrood , the following series apply, which also converge faster than the series from Lupaş :
G
=
1
64
∑
k
=
1
∞
256
k
(
580
k
2
-
184
k
+
15th
)
k
3
(
2
k
-
1
)
(
6th
k
3
k
)
(
6th
k
4th
k
)
(
4th
k
2
k
)
{\ displaystyle G = {\ frac {1} {64}} \ sum _ {k = 1} ^ {\ infty} {\ frac {256 ^ {k} \ left (580k ^ {2} -184k + 15 \ right)} {k ^ {3} (2k-1) {\ binom {6k} {3k}} {\ binom {6k} {4k}} {\ binom {4k} {2k}}}}}
,
G
=
-
1
64
∑
k
=
1
∞
(
-
256
)
k
(
419840
k
6th
-
915456
k
5
+
782848
k
4th
-
332800
k
3
+
73256
k
2
-
7800
k
+
315
)
k
3
(
2
k
-
1
)
(
4th
k
-
1
)
2
(
4th
k
-
3
)
2
(
8th
k
4th
k
)
2
(
2
k
k
)
{\ displaystyle G = - {\ frac {1} {64}} \ sum _ {k = 1} ^ {\ infty} {\ frac {(-256) ^ {k} \ left (419840k ^ {6} - 915456k ^ {5} + 782848k ^ {4} -332800k ^ {3} + 73256k ^ {2} -7800k + 315 \ right)} {k ^ {3} (2k-1) (4k-1) ^ {2 } (4k-3) ^ {2} {\ binom {8k} {4k}} ^ {2} {\ binom {2k} {k}}}}}
.
BBP-like series
A BBP series has been looking for a long time . At first only very long specimens were found. The 9-part by Victor Adamchik (2007) is relatively short :
G
=
3
64
∑
n
=
0
∞
(
-
1
)
n
64
n
(
32
(
12
n
+
1
)
2
-
32
(
12
n
+
2
)
2
-
32
(
12
n
+
3
)
2
-
8th
(
12
n
+
5
)
2
-
16
(
12
n
+
6th
)
2
-
4th
(
12
n
+
7th
)
2
-
4th
(
12
n
+
9
)
2
-
2
(
12
n
+
10
)
2
+
1
(
12
n
+
11
)
2
)
{\ displaystyle {\ textstyle G = {\ frac {3} {64}} \ sum \ limits _ {n = 0} ^ {\ infty} {\ frac {(-1) ^ {n}} {64 ^ { n}}} \ left ({\ frac {32} {(12n + 1) ^ {2}}} - {\ frac {32} {(12n + 2) ^ {2}}} - {\ frac {32 } {(12n + 3) ^ {2}}} - {\ frac {8} {(12n + 5) ^ {2}}} - {\ frac {16} {(12n + 6) ^ {2}} } - {\ frac {4} {(12n + 7) ^ {2}}} - {\ frac {4} {(12n + 9) ^ {2}}} - {\ frac {2} {(12n + 10) ^ {2}}} + {\ frac {1} {(12n + 11) ^ {2}}} \ right)}}
literature
E. Catalan : Mémoire sur la transformation des séries et sur quelques intégrales définies (April 1, 1865), Mémoires couronnés et mémoires des savants étrangers 33, 1867, pp. 1-50 (French; "G = 0.915 965 594 177 21" on p. 30; in the Internet archive: [1] )
LA Ljusternik : Mathematical Analysis. Functions, Limits, Series, Continued Fractions , 1965, pp. 313-314 (English)
Individual evidence
↑ Tanguy Rivoal, Wadim Zudilin: Diophantine properties of numbers related to Catalan's constant ( PDF file, 207 kB), Mathematische Annalen 326, August 2003, pp. 705–721 (English).
↑ Alexander Yee: Records set by y-cruncher. August 24, 2017, accessed on February 28, 2020 .
↑ Alexandru Lupaş : Formulas for some classical constants ( PDF file, 169 kB), Preprint, 2000; in Heiner Gonska et al. (Ed.): Proceedings of the 4th Romanian-German seminar on approximation theory and its applications, Braşov, Romania, July 3-5, 2000 , series of publications from the Mathematics Department of the Gerhard Mercator University Duisburg SM-DU-485, 2000, Pp. 70-76.
↑ a b c Alexander J. Yee: Formulas and Algorithms. Retrieved March 15, 2020 .
↑ Jesus Guillera: a new formula for computing the Catalan constant. Retrieved March 15, 2020 .
↑ Jesus Guillera: Hypergeometric Identities for 10 extended Ramanujan-type series . arxiv : 1104.0396v1 .
↑ Khodabakhsh Hessami Pilehrood, Tatiana Hessami Pilehrood: Series acceleration formulas for beta values . In: Discrete Mathematics and Theoretical Computer Science . tape 12 , no. 2 , 2010, p. 223-236 ( inria.fr ).
Web links
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">