Bernstein Inequality (Analysis)

from Wikipedia, the free encyclopedia

The Bernstein inequalities - named after the Russian mathematician Sergei Natanowitsch Bernstein - specify an upper bound for the derivation of polynomials in a closed interval. They are used in the area of approximation theory .

Trigonometric polynomials

Bernstein considered trigonometric polynomials of degree n of the form in 1912

with and

For these he proved the following inequality - but only for pure cosine polynomials.

Let be a trigonometric polynomial of degree less than or equal to and the first derivative, then applies

The represented shape with sine and cosine was described by the Hungarian mathematician Leopold Fejér in 1914, and Edmund Landau later mentioned it in a letter to Bernstein. Alternative proofs of the inequality are shown by Marcel Riesz in 1914 and George Pólya and Gábor Szegő in 1925.

This Bernstein inequality is helpful in proving a Markov inequality .

General polynomials

The Bernstein inequality can be generalized to general polynomials in the complex plane .

Let be a polynomial of degree on the complex numbers and the first derivative. Then applies on the unit circle :

This inequality, in turn, can be generalized to higher derivatives.

Let be a polynomial of degree on the complex numbers, the -th derivative. Then applies on the unit circle :

See also

Individual evidence

  1. Sergei Natanowitsch Bernstein: Sur l'ordre de la meilleure approximation des fonctions continues par des polynomes. Académie Royale de Belgique, Classe des Sciences, Mémores Collection in 4th, ser. II, Vol. 4 (1922). = Russian translation in Communications of the Kharkov Mathematical Society (CKMS) Vol. 13 (1912), 49-194.
  2. ^ Leopold Fejér: About conjugated trigonometric series. Journal for pure and applied mathematics , Vol. 144 (1914), pp. 48–56 Online (accessed on May 13, 2014)
  3. Sergei Natanowitsch Bernstein: Leçons sur les Propriétés Extrémales et la Meilleure Approximation des Fonctions Analytiques d'une Variable Réelle. Gauthier-Villars, Paris 1926.
  4. Marcel Riesz: A trigonometric interpolation formula and some inequalities for polynomials. German Mathematicians Association , Annual Report, Vol. 23 (1914), pp. 354–368. Online (accessed May 13, 2014)
  5. Marcel Riesz: Formule d'interpolation pour la dérivée d'un polynome trigonométrique. Comptes Rendus Hebdomaries, Séances de l'Académie des Sciences, Paris, Vol. 158 (1914), pp. 1152-1154. Online (accessed May 13, 2014)
  6. ^ George Pólya, Gábor Szegő: Exercises and theorems from analysis. Springer, Berlin 1925.

literature