DPANN

from Wikipedia, the free encyclopedia
DPANN
Nanoarchaeum equitans (the small symbionts on the right)

Nanoarchaeum equitans (the small symbionts on the right)

Systematics
Classification : Creature
Domain : Archaea (Archaea)
Over trunk : DPANN
Scientific name
DPANN
Rinke et al., 2013

DPANN is a super phylum extremophile archaea .

The taxon was proposed by Rinke and colleagues in 2013. DPANN is an acronym formed from the first letters of the first five found tribes ( Phyla ), Diapherotrites , Parvarchaeota , Aenigmarchaeota , Nanoarchaeota and Nanohaloarchaeota . Phyla discovered later, such as Woesearchaeota , Pacearchaeota and Altiarchaeota , were subsequently proposed as additional members of this superphylum.

The Superphylum DPANN combines different Archaeenstämme with a wide distribution and different metabolism, which of symbiotic and thermophilic forms such as Nanoarchaeota over acidophilic (acid-loving) as Parvarchaeota to non-extremophiles as Aenigmarchaeota and Diapherotrites rich. Many members show novel signs of horizontal gene transfer from other domains ( bacteria , eukaryotes ) of life.

Micrarchaeota and Parvarchaeota are closely related and are therefore combined in the group ARMAN (Archaeal Richmond Mine Acidophilic Nanoorganisms).

Systematics

According to Castelle and Banfield (2018), the superphylum DPANN is divided into the following phyla (strains), supplemented by NCBI and GTDB:

The above taxa are usually only proven by metagenomics and therefore have the prefix Candidatus , which has been omitted here for the sake of clarity. A cladogram of the DPANN archaea can be found in Castelle and Banfield (2018)

Web links

Individual evidence

  1. Cindy J. Castelle, Kelly C. Wrighton, Kenneth H. Williams, Jillian F. Banfield et al. : Genomic Expansion of Domain Archaea Highlights Roles for Organisms from New Phyla in Anaerobic Carbon Cycling . Current Biology. March 16, 2015. Retrieved January 14, 2017.
  2. Jacob P. Beam, Eric D. Becraft, Julia M. Brown, Frederik Schulz, Jessica K. Jarett, Oliver Bezuidt, Nicole J. Poulton, Kayla Clark, Peter F. Dunfield, Nikolai V. Ravin, John R. Spear, Brian P. Hedlund, Konstantinos A. Kormas, Stefan M. Sievert, Mostafa S. Elshahed, Hazel A. Barton, Matthew B. Stott, Jonathan A. Eisen, Duane P. Moser, Tullis C. Onstott, Tanja Woyke, Ramunas Stepanauskas : Ancestral Absence of Electron Transport Chains in Patescibacteria and DPANN , in: Frontiers in Microbiology, Volume 11, 2020, doi: 10.3389 / fmicb.2020.01848
  3. a b C. Rinke, P. Schwientek, A. Sczyrba, NN Ivanova, IJ Anderson, JF Cheng, JA Dodsworth, BP Hedlund, G. Tsiamis, SM Sievert, WT Liu, JA Eisen, SJ Hallam, NC Kyrpides, R Stepanauskas, EM Rubin, P. Hugenholtz, T. Woyke: Insights into the phylogeny and coding potential of microbial dark matter . In: Nature . 499, No. 7459, July 2013, pp. 431-437. doi : 10.1038 / nature12352 . PMID 23851394 .
  4. a b c d CJ Castelle, KC Wrighton, BC Thomas, LA Hug, CT Brown, M. J Wilkins, KR Frischkorn, S. G Tringe, A. Singh, LM Markillie, R. C Taylor, KH Williams, JF Banfield : Genomic Expansion of Domain Archaea Highlights Roles for Organisms from New Phyla in Anaerobic Carbon Cycling . In: Current Biology . 25, February 19, 2015, pp. 690–701. doi : 10.1016 / j.cub.2015.01.014 . PMID 25702576 .
  5. Anja Spang, Eva F. Caceres, Thijs J. G. Ettema: Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life . In: Science . 357, No. 6351, August 11, 2017, p. Eaaf3883. doi : 10.1126 / science.aaf3883 . PMID 28798101 .
  6. ^ A b C. J. Castelle, J. Banfield: Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life . In: Cell . 172, No. 6, 2018, pp. 1181–1197. doi : 10.1016 / j.cell.2018.02.016 . PMID 29522741 . See in particular Fig.  1B
  7. NCBI: DPANN group
  8. GTDB
  9. K. Takai, D. P. Moser, M. DeFlaun, T. C. Onstott, J. K. Fredrickson: Archaeal diversity in waters from deep South African gold mines . In: Applied and Environmental Microbiology . 67, No. 12, December 2001, pp. 5750-5760. doi : 10.1128 / AEM.67.21.5750-5760.2001 . PMID 11722932 . PMC 93369 (free full text).
  10. Gp0019039 - Candidatus Iainarchaeum andersonii SCGC AAA011-E11 , on: Genomes Online Database
  11. L. R. Comolli, B. J. Baker, K. H. Downing, C. E. Siegerist, J. F. Banfield: Three-dimensional analysis of the structure and ecology of a novel, ultra-small archaeon . In: The ISME Journal . 3, No. 2, February 2009, pp. 159-167. doi : 10.1038 / ismej.2008.99 . PMID 18946497 .
  12. Uniprot: Huberarchaea
  13. B. J. Baker, G. W. Tyson, R. I. Webb, J. Flanagan, P. Hugenholtz, E. E. Allen, J. F. Banfield: Lineages of acidophilic archaea revealed by community genomic analysis . In: Science . 314, No. 5807, December 2006, pp. 1933-1935. doi : 10.1126 / science.1132690 . PMID 17185602 .
  14. S. Murakami, K. Fujishima, M. Tomita, A. Kanai: Metatranscriptomic analysis of microbes in an Oceanfront deep-subsurface hot spring reveals novel small RNAs and type-specific tRNA degradation . In: Applied and Environmental Microbiology . 78, No. 4, February 2012, pp. 1015-1022. doi : 10.1128 / AEM.06811-11 . PMID 22156430 . PMC 3272989 (free full text).
  15. B. J. Baker, L. R. Comolli, G. J. Dick, L. J. Hauser, D. Hyatt, B. D. Dill, M. L. Land, N. C. Verberkmoes, R. L. Hettich, J. F. Banfield: Enigmatic, ultrasmall, uncultivated Archaea . In: Proceedings of the National Academy of Sciences of the United States of America . 107, No. 19, May 2010, pp. 8806-8811. doi : 10.1073 / pnas.0914470107 . PMID 20421484 . PMC 2889320 (free full text).
  16. Jump up ↑ E. Waters, MJ Hohn, I. Ahel, DE Graham, MD Adams, M. Barnstead, KY Beeson, L. Bibbs, R. Bolanos, M. Keller, K. Kretz, X. Lin, E. Mathur, J Ni, M. Podar, T. Richardson, GG Sutton, M. Simon, D. Soll, KO Stetter, JM Short, M. Noordewier: The genome of Nanoarchaeum equitans : insights into early archaeal evolution and derived parasitism . In: Proceedings of the National Academy of Sciences of the United States of America . 100, No. 22, October 2003, pp. 12984-12988. doi : 10.1073 / pnas.1735403100 . PMID 14566062 . PMC 240731 (free full text).
  17. M. Podar, K.. Makarova, D. E. Graham, Y. I. Wolf, E. V. Koonin, A. L. Reysenbach: Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park. . In: Biology Direct . 8, No. 1, December 2013, p. 9. doi : 10.1186 / 1745-6150-8-9 . PMID 23607440 . PMC 3655853 (free full text).
  18. ^ A b R. Ortiz-Alvarez, E. O. Casamayor: High occurrence of Pacearchaeota and Woesearchaeota (Archaea superphylum DPANN) in the surface waters of oligotrophic high-altitude lakes . In: Environmental Microbiology Reports . 8, No. 2, April 2016, pp. 210-217. doi : 10.1111 / 1758-2229.12370 . PMID 26711582 .