In continuum mechanics,  the deformation   invariants  denote the three  main invariants of  the right or left Cauchy-Green  deformation tensor  . They represent the  coefficients of  the  characteristic polynomial  in the  main axis transformation of  the distance tensor. At the same time, according to  Vieta's theorem  , they can also be expressed by the  main  extensions:
  
    
      
        
          I. 
          
            1 
           
         
        , 
        
          I. 
          
            2 
           
         
        , 
        
          I. 
          
            3 
           
         
       
     
    {\ displaystyle I_ {1}, I_ {2}, I_ {3}} 
   
 
  
    
      
        
          λ 
          
            1 
           
         
        , 
        
          λ 
          
            2 
           
         
        , 
        
          λ 
          
            3 
           
         
       
     
    {\ displaystyle \ lambda _ {1}, \ lambda _ {2}, \ lambda _ {3}} 
   
   
  
    
      
        
          
            
              
                
                  I. 
                  
                    1 
                   
                 
               
              
                = 
               
              
                
                  S. 
                  p 
                  u 
                  r 
                 
                ( 
                
                  b 
                 
                ) 
               
              
                = 
               
              
                
                  λ 
                  
                    1 
                   
                  
                    2 
                   
                 
                + 
                
                  λ 
                  
                    2 
                   
                  
                    2 
                   
                 
                + 
                
                  λ 
                  
                    3 
                   
                  
                    2 
                   
                 
               
             
            
              
                
                  I. 
                  
                    2 
                   
                 
               
              
                = 
               
              
                
                  S. 
                  p 
                  u 
                  r 
                 
                ( 
                
                  
                    b 
                   
                  
                    - 
                    1 
                   
                 
                ) 
                det 
                ( 
                
                  b 
                 
                ) 
               
              
                = 
               
              
                
                  λ 
                  
                    1 
                   
                  
                    2 
                   
                 
                
                  λ 
                  
                    2 
                   
                  
                    2 
                   
                 
                + 
                
                  λ 
                  
                    1 
                   
                  
                    2 
                   
                 
                
                  λ 
                  
                    3 
                   
                  
                    2 
                   
                 
                + 
                
                  λ 
                  
                    2 
                   
                  
                    2 
                   
                 
                
                  λ 
                  
                    3 
                   
                  
                    2 
                   
                 
               
             
            
              
                
                  I. 
                  
                    3 
                   
                 
               
              
                = 
               
              
                det 
                ( 
                
                  b 
                 
                ) 
               
              
                = 
               
              
                
                  λ 
                  
                    1 
                   
                  
                    2 
                   
                 
                
                  λ 
                  
                    2 
                   
                  
                    2 
                   
                 
                
                  λ 
                  
                    3 
                   
                  
                    2 
                   
                 
               
             
           
         
       
     
    {\ displaystyle {\ begin {array} {lclcl} I_ {1} & = & \ mathrm {Spur} (\ mathbf {b}) & = & \ lambda _ {1} ^ {2} + \ lambda _ {2 } ^ {2} + \ lambda _ {3} ^ {2} \\ I_ {2} & = & \ mathrm {trace} (\ mathbf {b} ^ {- 1}) \, \ det (\ mathbf { b}) & = & \ lambda _ {1} ^ {2} \, \ lambda _ {2} ^ {2} + \ lambda _ {1} ^ {2} \, \ lambda _ {3} ^ {2 } + \ lambda _ {2} ^ {2} \, \ lambda _ {3} ^ {2} \\ I_ {3} & = & \ det (\ mathbf {b}) & = & \ lambda _ {1 } ^ {2} \, \ lambda _ {2} ^ {2} \, \ lambda _ {3} ^ {2} \ end {array}}} 
   
 With
  
    
      
        
          b 
         
       
     
    {\ displaystyle \ mathbf {b}} 
   
  
  
    
      
        
          S. 
          p 
          u 
          r 
         
        ( 
        
          b 
         
        ) 
       
     
    {\ displaystyle \ mathrm {trace} (\ mathbf {b})} 
   
 trace of  the deformation tensor, 
  
    
      
        det 
        ( 
        
          b 
         
        ) 
       
     
    {\ displaystyle \ det (\ mathbf {b})} 
   
 determinant of  the deformation tensor, 
  
    
      
        
          
            b 
           
          
            - 
            1 
           
         
       
     
    {\ displaystyle \ mathbf {b} ^ {- 1}} 
   
 inverse of  the deformation tensor and 
  
    
      
        
          λ 
          
            1 
            , 
            2 
            , 
            3 
           
          
            2 
           
         
        = 
        
          η 
          
            1 
            , 
            2 
            , 
            3 
           
         
       
     
    {\ displaystyle \ lambda _ {1,2,3} ^ {2} = \ eta _ {1,2,3}} 
   
  
 
The above relationships apply to the left Cauchy-Green tensor and  the right Cauchy-Green tensor , because both tensors have due
  
    
      
        
          b 
         
        : = 
        
          F. 
          ⋅ 
          
            F. 
            
              ⊤ 
             
           
         
       
     
    {\ displaystyle \ mathbf {b}: = \ mathbf {F \ cdot F ^ {\ top}}} 
   
 
  
    
      
        
          C. 
         
        : = 
        
          
            F. 
            
              ⊤ 
             
           
          ⋅ 
          F. 
         
       
     
    {\ displaystyle \ mathbf {C}: = \ mathbf {F ^ {\ top} \ cdot F}} 
   
  
  
    
      
        
          b 
         
        ⋅ 
        
          
            
              v 
              → 
             
           
         
        = 
        η 
        
          
            
              v 
              → 
             
           
         
        ⇔ 
        
          
            F. 
            
              ⊤ 
             
           
          ⋅ 
          b 
         
        ⋅ 
        
          
            
              v 
              → 
             
           
         
        = 
        
          
            F. 
            
              ⊤ 
             
           
          ⋅ 
          F. 
          ⋅ 
          
            F. 
            
              ⊤ 
             
           
         
        ⋅ 
        
          
            
              v 
              → 
             
           
         
        = 
        
          C. 
          ⋅ 
          ( 
          
            F. 
            
              ⊤ 
             
           
         
        ⋅ 
        
          
            
              v 
              → 
             
           
         
        ) 
        = 
        η 
        ( 
        
          
            F. 
            
              ⊤ 
             
           
         
        ⋅ 
        
          
            
              v 
              → 
             
           
         
        ) 
       
     
    {\ displaystyle \ mathbf {b} \ cdot {\ vec {v}} = \ eta {\ vec {v}} \ quad \ Leftrightarrow \ quad \ mathbf {F ^ {\ top} \ cdot b} \ cdot {\ vec {v}} = \ mathbf {F ^ {\ top} \ cdot F \ cdot F ^ {\ top}} \ cdot {\ vec {v}} = \ mathbf {C \ cdot (F ^ {\ top} } \ cdot {\ vec {v}}) = \ eta (\ mathbf {F ^ {\ top}} \ cdot {\ vec {v}})} 
   
 
Illustration of the polar decomposition
 
 the same eigenvalues and thus also the same invariants, which makes them mathematically similar  to one another . The tensor F  is the deformation gradient  . The same applies to the symmetrical  , positively definite  , right and left deformation tensors U  and v  , which are according to
  
    
      
        
          F. 
         
        = 
        
          R. 
          ⋅ 
          U 
         
        = 
        
          v 
          ⋅ 
          R. 
         
        . 
       
     
    {\ displaystyle \ mathbf {F} = \ mathbf {R \ cdot U} = \ mathbf {v \ cdot R}.} 
   
 result from the polar decomposition of  the deformation gradient, see picture. Here R is  an actually orthogonal tensor  with the properties R  T  · R  = 1  and det ( R  ) = +1 ( 1  is the unit tensor  .) The right and left deformation tensor have due
  
    
      
        
          v 
         
        ⋅ 
        
          
            
              v 
              → 
             
           
         
        = 
        λ 
        
          
            
              v 
              → 
             
           
         
        ⇔ 
        
          b 
         
        ⋅ 
        
          
            
              v 
              → 
             
           
         
        = 
        
          F. 
          ⋅ 
          
            F. 
            
              ⊤ 
             
           
         
        ⋅ 
        
          
            
              v 
              → 
             
           
         
        = 
        
          v 
          ⋅ 
          R. 
          ⋅ 
          
            R. 
            
              ⊤ 
             
           
          ⋅ 
          
            v 
            
              ⊤ 
             
           
         
        ⋅ 
        
          
            
              v 
              → 
             
           
         
        = 
        λ 
        
          v 
         
        ⋅ 
        
          
            
              v 
              → 
             
           
         
        = 
        
          λ 
          
            2 
           
         
        
          
            
              v 
              → 
             
           
         
       
     
    {\ displaystyle \ mathbf {v} \ cdot {\ vec {v}} = \ lambda {\ vec {v}} \ quad \ Leftrightarrow \ quad \ mathbf {b} \ cdot {\ vec {v}} = \ mathbf {F \ cdot F ^ {\ top}} \ cdot {\ vec {v}} = \ mathbf {v \ cdot R \ cdot R ^ {\ top} \ cdot v ^ {\ top}} \ cdot {\ vec {v}} = \ lambda \ mathbf {v} \ cdot {\ vec {v}} = \ lambda ^ {2} {\ vec {v}}} 
   
 the main elongations λ  1,2,3  as eigenvalues, because they are also similar to each other:
  
    
      
        
          
            R. 
            
              ⊤ 
             
           
          ⋅ 
          v 
         
        ⋅ 
        
          
            
              v 
              → 
             
           
         
        = 
        
          
            R. 
            
              ⊤ 
             
           
          ⋅ 
          v 
          ⋅ 
          R. 
          ⋅ 
          
            R. 
            
              ⊤ 
             
           
         
        ⋅ 
        
          
            
              v 
              → 
             
           
         
        = 
        
          
            R. 
            
              ⊤ 
             
           
          ⋅ 
          R. 
          ⋅ 
          U 
          ⋅ 
          
            R. 
            
              ⊤ 
             
           
         
        ⋅ 
        
          
            
              v 
              → 
             
           
         
        = 
        
          U 
          ⋅ 
          ( 
          
            R. 
            
              ⊤ 
             
           
         
        ⋅ 
        
          
            
              v 
              → 
             
           
         
        ) 
        = 
        λ 
        ( 
        
          
            R. 
            
              ⊤ 
             
           
         
        ⋅ 
        
          
            
              v 
              → 
             
           
         
        ) 
        . 
       
     
    {\ displaystyle \ mathbf {R ^ {\ top} \ cdot v} \ cdot {\ vec {v}} = \ mathbf {R ^ {\ top} \ cdot v \ cdot R \ cdot R ^ {\ top}} \ cdot {\ vec {v}} = \ mathbf {R ^ {\ top} \ cdot R \ cdot U \ cdot R ^ {\ top}} \ cdot {\ vec {v}} = \ mathbf {U \ cdot (R ^ {\ top}} \ cdot {\ vec {v}}) = \ lambda (\ mathbf {R ^ {\ top}} \ cdot {\ vec {v}}).} 
   
 Because the deformation gradient is always and everywhere invertible, so are the distance sensors.
The third invariant also represents the square of the volume ratio   :
  
    
      
        J 
        : = 
        det 
         
        ( 
        
          F. 
         
        ) 
       
     
    {\ displaystyle J: = \ operatorname {det} (\ mathbf {F})} 
   
 
  
    
      
        
          I. 
          
            3 
           
         
        ( 
        
          b 
         
        ) 
        = 
        
          I. 
          
            3 
           
         
        ( 
        
          C. 
         
        ) 
        = 
        
          J 
          
            2 
           
         
        = 
        
          I. 
          
            3 
           
          
            2 
           
         
        ( 
        
          v 
         
        ) 
        = 
        
          I. 
          
            3 
           
          
            2 
           
         
        ( 
        
          U 
         
        ) 
        . 
       
     
    {\ displaystyle I_ {3} (\ mathbf {b}) = I_ {3} (\ mathbf {C}) = J ^ {2} = I_ {3} ^ {2} (\ mathbf {v}) = I_ {3} ^ {2} (\ mathbf {U}).} 
   
 If the material behavior is incompressible  ( ), the third invariant of the distance sensors remains the same as the identity.
  
    
      
        J 
        = 
        1 
       
     
    {\ displaystyle J = 1} 
   
 
literature  
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">