The -Lemma is a mathematical theorem from combinatorial set theory . It is used in the development of the forcing method.
Δ
{\ displaystyle \ Delta}
statement
Be a family of sets, and another set. is called a system with a root if:
D.
{\ displaystyle D}
d
{\ displaystyle d}
D.
{\ displaystyle D}
Δ
{\ displaystyle \ Delta}
d
{\ displaystyle d}
∀
x
≠
y
∈
D.
:
x
∩
y
=
d
{\ displaystyle \ forall x \ neq y \ in D: x \ cap y = d}
, the intersection of two sets is constant.
D.
{\ displaystyle D}
The -Lemma says: Every uncountable family of finite sets contains an uncountable system.
Δ
{\ displaystyle \ Delta}
Δ
{\ displaystyle \ Delta}
generalization
The lemma can be generalized as follows: Let cardinal numbers with
λ
<
μ
{\ displaystyle \ lambda <\ mu}
μ
{\ displaystyle \ mu}
is regular :
μ
=
c
f
(
μ
)
{\ displaystyle \ mu = cf (\ mu)}
The following applies to all : (see cardinal number arithmetic ),
α
<
μ
{\ displaystyle \ alpha <\ mu}
α
<
λ
: =
sup
γ
<
λ
α
γ
<
μ
{\ displaystyle \ alpha ^ {<\ lambda}: = \ sup _ {\ gamma <\ lambda} \ alpha ^ {\ gamma} <\ mu}
then there is for every family with and for a system of power . If one sets and , one obtains the above special case.
I.
{\ displaystyle I}
|
I.
|
=
μ
{\ displaystyle \ left | I \ right | = \ mu}
|
a
|
<
λ
{\ displaystyle \ left | a \ right | <\ lambda}
a
∈
I.
{\ displaystyle a \ in I}
Δ
{\ displaystyle \ Delta}
μ
{\ displaystyle \ mu}
λ
=
ℵ
0
{\ displaystyle \ lambda = \ aleph _ {0}}
μ
=
ℵ
1
{\ displaystyle \ mu = \ aleph _ {1}}
literature
Thomas Jech : Set Theory. 3rd millennium edition, revised and expanded, corrected 4th print. Springer, Berlin et al. 2006, ISBN 3-540-44085-2 .
Kenneth Kunen : Set Theory. An Introduction to Independence Proofs (= Studies in Logic and the Foundations of Mathematics. Vol. 102). North-Holland Publishing Co., Amsterdam et al. 1980, ISBN 0-444-85401-0 .
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">