This article explains a convergence condition for Fourier series; for the boundary condition in differential equations; see
Dirichlet boundary condition .
The Dirichlet condition , also called Dirichlet's theorem , is named after Peter Gustav Lejeune Dirichlet and specifies when the Fourier series converges point by point to the output function.
statement
Let be a function defined in the interval that fulfills the following properties:
f
{\ displaystyle f}
[
-
T
/
2
,
T
/
2
]
{\ displaystyle [-T / 2, T / 2]}
The interval can be broken down into a finite number of sub-intervals in which is continuous and monotonic.
[
-
T
/
2
,
T
/
2
]
{\ displaystyle [-T / 2, T / 2]}
f
{\ displaystyle f}
The (finitely many) points of discontinuity are all of the first kind , that is, there are right and left-hand limit values , and .
f
(
t
0
+
)
{\ displaystyle f (t_ {0} +)}
f
(
t
0
-
)
{\ displaystyle f ({t_ {0}} -)}
Then the Fourier series converges in each to
t
∈
[
-
T
/
2
,
T
/
2
]
{\ displaystyle t \ in [-T / 2, T / 2]}
a
0
2
+
∑
n
=
1
∞
(
a
n
⋅
cos
(
n
ω
t
)
+
b
n
⋅
sin
(
n
ω
t
)
)
=
{
f
(
t
)
,
if
f
in t continuously
(
f
(
t
+
)
+
f
(
t
-
)
)
/
2
,
if
f
in t discontinuous
{\ displaystyle {\ frac {a_ {0}} {2}} + \ sum _ {n = 1} ^ {\ infty} (a_ {n} \ cdot \ cos (n \ omega t) + b_ {n} \ cdot \ sin (n \ omega t)) = {\ begin {cases} f (t), & {\ mbox {if}} f {\ mbox {in t continuous}} \\ (f (t +) + f (t -)) / 2, & {\ mbox {if}} f {\ mbox {in t discontinuous}} \ end {cases}}}
.
swell
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">