Ferrier reaction

from Wikipedia, the free encyclopedia

The Ferrier reaction is a name reaction in organic chemistry . In 1914, the German Nobel Laureate in Chemistry, Emil Fischer (1852-1919) reported this reaction for the first time. The rearrangement takes place in the presence of a Lewis acid on unsaturated compounds. This rearrangement reaction is often referred to as type I of the Ferrier rearrangement.

Overview reaction

The synthetic utility of the Ferrier reaction was recognized by Robert J. Ferrier in the early 1960s, when he successfully synthesized oxygen, sulfur, and nitrogen-bonded unsaturated glycosyl compounds from 1,2-glycal and nucleophiles in the presence of a Lewis acid. The special features of this reaction are:

  • good leaving groups on the starting compounds that can be activated under the conditions of a Mitsunobu reaction even without the use of Lewis acids (e.g. tosylates )
  • the use of common Lewis acids (e.g. FeCl 3 )
  • the stereochemistry of the product at the anomeric center is related to the stereochemistry of the starting material, the α-anomer normally dominating
Ferrier I overviewV1.svg

Reaction mechanism

In the first step of the proposed Type I Ferrier reaction mechanism, the leaving group leaves the 1,2-glycal using a Lewis acid. The resulting mesomeric-stabilized intermediate is then attacked by the nucleophile and the corresponding 2,3-unsaturated glycosyl compound is formed.

application

The Type I Ferrier reaction was used in the HMI Osborn laboratory to form unsaturated β-C disaccharides. DR Williams and his co-workers also used the rearrangement to synthesize (+) - 4,5-deoxyneodolabellin.

See also

Individual evidence

  1. a b c d e László Kürti , Barbara Czakó: Strategic applications of named reactions in organic synthesis: background and detailed mechanisms . Elsevier Academic Press, Amsterdam 2005, ISBN 0-12-429785-4 , pp. 168-169 .
  2. RJ Ferrier, WG Overend, AE Ryan: 712. The reaction between 3,4,6-tri-O-acetyl-D-glucal and p-nitrophenol . In: Journal of the Chemical Society (Resumed) . 1962, p. 3667-3670 , doi : 10.1039 / jr9620003667 .
  3. ^ RJ Ferrier: 1038. Unsaturated carbohydrates. Part II. Three reactions leading to unsaturated glycopyranosides . In: Journal of the Chemical Society (Resumed) . 1964, p. 5443-5449 , doi : 10.1039 / jr9640005443 .
  4. ^ RJ Ferrier, N. Prasad, GH Sankey: Unsaturated carbohydrates. Part VIII. Intramolecular allylic isomerizations of 1-deoxyald-1-enopyranose (2-hydroxyglycal) esters . In: Journal of the Chemical Society C: Organic . 1968, p. 974-977 , doi : 10.1039 / j39680000974 .
  5. Aditya Sobti, Gary A. Sulikowski: Mitsunobu reactions of glycals with phenoxide nucleophiles are SN2′-selective . In: Tetrahedron Letters . tape 35 , no. 22 May 1994, pp. 3661-3664 , doi : 10.1016 / S0040-4039 (00) 73065-6 .
  6. Masato Koreeda, Todd A. Houston, Brian K. Shull, Erich Klemke, Roeland J. Tuinman: Iodine-catalyzed Ferrier Reaction 1. A Mild and Highly Versatile Glycosylation of Hydroxyl and Phenolic Groups1 . In: Synlett . tape 1995 , no. January 01 , 1995, p. 90-92 , doi : 10.1055 / s-1995-4873 .
  7. ^ RJ Ferrier, N. Prasad: Unsaturated carbohydrates. Part IX. Synthesis of 2,3-dideoxy-α-D -erythro-hex-2-enopyranosides from tri-O-acetyl-D -glucal . In: J. Chem. Soc. C . tape 0 , no. 4 , 1969, p. 570-575 , doi : 10.1039 / J39690000570 .
  8. ^ RD (Gus) Guthrie, Robert W. Irvine: Allylic substitutions in tri-O-acetyl-glycals and related compounds . In: Carbohydrate Research . tape 82 , no. 2 , 1980, p. 207-224 , doi : 10.1016 / S0008-6215 (00) 85698-0 ( elsevier.com [accessed April 23, 2019]).
  9. ^ Antonio S. Machado, Didier Dubreuil, Jeannine Cleophax, Stephane D. Gero, Noel F. Thomas: Expedient syntheses of inososes from carbohydrates: conformational and stereoelectronic aspects of the Ferrier reaction . In: Carbohydrate Research . tape 233 , 1992, pp. C5-C8 , doi : 10.1016 / S0008-6215 (00) 90945-5 .
  10. Noriaki Yamauchi, Takumi Terachi, Tadashi Eguchi, Katsumi Kakinuma: Mechanistic and stereochemical studies on Ferrier reaction by means of chirally deuterated glucose . In: Tetrahedron . tape 50 , no. 14 , 1994, pp. 4125-4136 , doi : 10.1016 / S0040-4020 (01) 86708-9 .
  11. Didier Dubreuil, Jeannine Cleophax, Mauro Vieira de Almeida, Catherine Verre-Sebrié, Jérôme Liaigre: Stereoselective synthesis of 6-deoxy and 3,6-dideoxy-D-myo-inositol precursors of deoxy-myo-inositol phosphate analogues from D- galactose . In: Tetrahedron . tape 53 , no. 49 , December 1997, p. 16747-16766 , doi : 10.1016 / S0040-4020 (97) 10101-6 .
  12. Leo A. Paquette, Margaret J. Kinney, Uta Dullweber: Practical Synthesis of Spirocyclic Bis-C, C-glycosides. Mechanistic Models in Explanation of Rearrangement Stereoselectivity and the Bifurcation of Reaction Pathways . In: The Journal of Organic Chemistry . tape 62 , no. 6 , 1997, pp. 1713-1722 , doi : 10.1021 / jo962020i .
  13. Robert J. Ferrier: Substitution-with-Allylic-Rearrangement Reactions of Glycal Derivatives . In: Topics in Current Chemistry . Springer Berlin Heidelberg, Berlin, Heidelberg 2001, ISBN 978-3-540-41383-7 , pp. 153-175 .
  14. Natasha Gemmell, Paul Meo, Helen MI Osborn: Stereoselective Entry to β-Linked C -Disaccharides Using a Carbon-Ferrier Reaction . In: Organic Letters . tape 5 , no. 10 , 2003, p. 1649-1652 , doi : 10.1021 / ol030023t .
  15. David R. Williams, Richard W. Heidebrecht: Total Synthesis of (+) - 4,5-Deoxyneodolabelline . In: Journal of the American Chemical Society . tape 125 , no. 7 , 2003, p. 1843-1850 , doi : 10.1021 / ja0279803 .