In stochastics, the  formula of Wald  or Wald's  identity  is an equation  with the help of which the  expected value  of sums of  random variables  with a random number of summands can be calculated. It was proven in 1944 in a work by the mathematician  Abraham Wald  .
 
formulation  
Let it be a sequence of independent, identically distributed  ,  integrable  random variables and a -value random variable with , which is  independent  of the sequence . Then applies
  
    
      
        ( 
        
          X 
          
            n 
           
         
        
          ) 
          
            n 
            ≥ 
            1 
           
         
       
     
    {\ displaystyle (X_ {n}) _ {n \ geq 1}} 
   
 
  
    
      
        T 
       
     
    {\ displaystyle T} 
   
 
  
    
      
        
          N 
         
       
     
    {\ displaystyle \ mathbb {N}} 
   
 
  
    
      
        E. 
         
        ( 
        T 
        ) 
        < 
        ∞ 
       
     
    {\ displaystyle \ operatorname {E} (T) <\ infty} 
   
 
  
    
      
        ( 
        
          X 
          
            n 
           
         
        ) 
       
     
    {\ displaystyle (X_ {n})} 
   
    
  
    
      
        E. 
         
        
          ( 
          
            
              ∑ 
              
                k 
                = 
                1 
               
              
                T 
               
             
            
              X 
              
                k 
               
             
           
          ) 
         
        = 
        E. 
         
        ( 
        T 
        ) 
        E. 
         
        ( 
        
          X 
          
            1 
           
         
        ) 
       
     
    {\ displaystyle \ operatorname {E} \ left (\ sum _ {k = 1} ^ {T} X_ {k} \ right) = \ operatorname {E} (T) \ operatorname {E} (X_ {1}) } 
   
  .  
proof  
Because is independent of the sequence , it follows from conditions  on the value of :
  
    
      
        T 
       
     
    {\ displaystyle T} 
   
 
  
    
      
        ( 
        
          X 
          
            n 
           
         
        ) 
       
     
    {\ displaystyle (X_ {n})} 
   
 
  
    
      
        T 
       
     
    {\ displaystyle T} 
   
  
  
    
      
        E. 
         
        
          ( 
          
            
              ∑ 
              
                k 
                = 
                1 
               
              
                T 
               
             
            
              X 
              
                k 
               
             
             
            
              
                | 
               
             
             
            T 
            = 
            n 
           
          ) 
         
        = 
        E. 
         
        
          ( 
          
            
              ∑ 
              
                k 
                = 
                1 
               
              
                n 
               
             
            
              X 
              
                k 
               
             
           
          ) 
         
        = 
        
          ∑ 
          
            k 
            = 
            1 
           
          
            n 
           
         
        E. 
         
        ( 
        
          X 
          
            k 
           
         
        ) 
        = 
        n 
        E. 
         
        ( 
        
          X 
          
            1 
           
         
        ) 
       
     
    {\ displaystyle \ operatorname {E} \ left (\ sum _ {k = 1} ^ {T} X_ {k} \; {\ Big |} \; T = n \ right) = \ operatorname {E} \ left (\ sum _ {k = 1} ^ {n} X_ {k} \ right) = \ sum _ {k = 1} ^ {n} \ operatorname {E} (X_ {k}) = n \ operatorname {E } (X_ {1})} 
   
  ,  
so
  
    
      
        E. 
         
        
          ( 
          
            
              ∑ 
              
                k 
                = 
                1 
               
              
                T 
               
             
            
              X 
              
                k 
               
             
             
            
              
                | 
               
             
             
            T 
           
          ) 
         
        = 
        T 
        E. 
         
        ( 
        
          X 
          
            1 
           
         
        ) 
       
     
    {\ displaystyle \ operatorname {E} \ left (\ sum _ {k = 1} ^ {T} X_ {k} \; {\ Big |} \; T \ right) = T \ operatorname {E} (X_ { 1})} 
   
  .  
By applying the expectation to this equation, one finally obtains
  
    
      
        E. 
         
        
          ( 
          
            
              ∑ 
              
                k 
                = 
                1 
               
              
                T 
               
             
            
              X 
              
                k 
               
             
           
          ) 
         
        = 
        E. 
         
        
          ( 
          
            E. 
             
            
              ( 
              
                
                  ∑ 
                  
                    k 
                    = 
                    1 
                   
                  
                    T 
                   
                 
                
                  X 
                  
                    k 
                   
                 
                 
                
                  
                    | 
                   
                 
                 
                T 
               
              ) 
             
           
          ) 
         
        = 
        E. 
         
        ( 
        T 
        E. 
         
        ( 
        
          X 
          
            1 
           
         
        ) 
        ) 
        = 
        E. 
         
        ( 
        T 
        ) 
        E. 
         
        ( 
        
          X 
          
            1 
           
         
        ) 
       
     
    {\ displaystyle \ operatorname {E} \ left (\ sum _ {k = 1} ^ {T} X_ {k} \ right) = \ operatorname {E} \ left (\ operatorname {E} \ left (\ sum _ {k = 1} ^ {T} X_ {k} \; {\ Big |} \; T \ right) \ right) = \ operatorname {E} (T \ operatorname {E} (X_ {1})) = \ operatorname {E} (T) \ operatorname {E} (X_ {1})} 
   
  .  
If they are all valued, the elementary proof can also take place via probability-generating functions  using the  chain rule  .
  
    
      
        
          X 
          
            i 
           
         
       
     
    {\ displaystyle X_ {i}} 
   
 
  
    
      
        
          
            N 
           
          
            0 
           
         
       
     
    {\ displaystyle \ mathbb {N} _ {0}} 
   
  
Generalization to stop times  
Let it now be a sequence of identically distributed, integrable random variables that is adapted  to a  filtering process  , i.e. it is measurable for all . If by independently for all and an integrable  stop time  with respect , so also the formula is of forest:
  
    
      
        ( 
        
          X 
          
            n 
           
         
        
          ) 
          
            n 
            ≥ 
            1 
           
         
       
     
    {\ displaystyle (X_ {n}) _ {n \ geq 1}} 
   
   
  
    
      
        ( 
        
          
            
              F. 
             
           
          
            n 
           
         
        
          ) 
          
            n 
           
         
       
     
    {\ displaystyle ({\ mathcal {F}} _ {n}) _ {n}} 
   
   
  
    
      
        n 
       
     
    {\ displaystyle n} 
   
 
  
    
      
        
          X 
          
            n 
           
         
       
     
    {\ displaystyle X_ {n}} 
   
   
  
    
      
        
          
            
              F. 
             
           
          
            n 
           
         
       
     
    {\ displaystyle {\ mathcal {F}} _ {n}} 
   
 
  
    
      
        
          X 
          
            n 
            + 
            1 
           
         
       
     
    {\ displaystyle X_ {n + 1}} 
   
 
  
    
      
        
          
            
              F. 
             
           
          
            n 
           
         
       
     
    {\ displaystyle {\ mathcal {F}} _ {n}} 
   
 
  
    
      
        n 
        ∈ 
        
          N 
         
       
     
    {\ displaystyle n \ in \ mathbb {N}} 
   
 
  
    
      
        T 
       
     
    {\ displaystyle T} 
   
 
  
    
      
        ( 
        
          
            
              F. 
             
           
          
            n 
           
         
        
          ) 
          
            n 
           
         
       
     
    {\ displaystyle ({\ mathcal {F}} _ {n}) _ {n}} 
   
  
  
    
      
        E. 
         
        
          ( 
          
            
              ∑ 
              
                k 
                = 
                1 
               
              
                T 
               
             
            
              X 
              
                k 
               
             
           
          ) 
         
        = 
        E. 
         
        ( 
        T 
        ) 
        E. 
         
        ( 
        
          X 
          
            1 
           
         
        ) 
       
     
    {\ displaystyle \ operatorname {E} \ left (\ sum _ {k = 1} ^ {T} X_ {k} \ right) = \ operatorname {E} (T) \ operatorname {E} (X_ {1}) } 
   
  .  
Related concepts  
Similar statements about the variance of composite distributions can be made with the Blackwell-Girshick equation  .
Individual evidence  
↑    Abraham Wald: On Cumulative Sums of Random Variables.  In: The Annals of Mathematical Statistics  No. 15, Vol. 3, pp. 283-296, doi  : 10.1214 / aoms / 1177731235   . 
 
↑    David Meintrup, Stefan Schäffler: Stochastics. Theory and applications.  Springer, Berlin / Heidelberg 2005, ISBN 3-540-21676-6  , p. 287. 
 
↑    Heinz Bauer  : Probability Theory.  5th edition. De Gruyter textbook, Berlin 2002, ISBN 3-11-017236-4  , chapter 17. 
 
 
 
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">