The Heisenberg picture of quantum mechanics is a model for dealing with time-dependent problems. The following assumptions apply in the Heisenberg picture:
To indicate that you are in the Heisenberg picture, states and operators are occasionally given the index "H": or
|
ψ
H
⟩
{\ displaystyle | \ psi _ {\ rm {H}} \ rangle}
A.
^
H
(
t
)
{\ displaystyle {\ hat {A}} _ {\ rm {H}} (t)}
Due to the prominent role of the operators in Heisenberg's formulation of quantum mechanics, this was historically also referred to as matrix mechanics . Two other models are the Schrödinger picture and the interaction picture . All models lead to the same expected values .
In the Heisenberg picture, the entire time dependency is in the operators, the states are independent of time:
|
ψ
H
⟩
=
|
ψ
S.
(
0
)
⟩
{\ displaystyle | \ psi _ {\ text {H}} \ rangle = | \ psi _ {\ text {S}} (0) \ rangle}
In the Schrödinger picture, however, the unitary time evolution operator mediates the time evolution of the states:
U
^
(
t
)
{\ displaystyle {\ hat {U}} (t)}
|
ψ
S.
(
t
)
⟩
=
U
^
(
t
)
|
ψ
S.
(
0
)
⟩
{\ displaystyle | \ psi _ {\ text {S}} (t) \ rangle = {\ hat {U}} (t) | \ psi _ {\ text {S}} (0) \ rangle}
The operator to be adjoint is , and because of the unitarity we have .
U
^
(
t
)
{\ displaystyle {\ hat {U}} (t)}
U
^
†
(
t
)
{\ displaystyle {\ hat {U}} ^ {\ dagger} (t)}
U
^
†
(
t
)
=
U
^
(
t
)
-
1
{\ displaystyle {\ hat {U}} ^ {\ dagger} (t) = {\ hat {U}} (t) ^ {- 1}}
The expected value of the operator must be the same in all images:
a
{\ displaystyle a}
A.
^
{\ displaystyle {\ hat {A}}}
a
=
⟨
ψ
S.
(
t
)
|
A.
^
S.
(
t
)
|
ψ
S.
(
t
)
⟩
=
⟨
ψ
S.
(
t
)
|
U
^
(
t
)
U
^
†
(
t
)
⏟
1
A.
^
S.
(
t
)
U
^
(
t
)
U
^
†
(
t
)
⏟
1
|
ψ
S.
(
t
)
⟩
=
⟨
U
^
†
(
t
)
ψ
S.
(
t
)
|
U
^
†
(
t
)
A.
^
S.
(
t
)
U
^
(
t
)
|
U
^
†
(
t
)
ψ
S.
(
t
)
⟩
=
⟨
ψ
S.
(
0
)
|
U
^
†
(
t
)
A.
^
S.
(
t
)
U
^
(
t
)
|
ψ
S.
(
0
)
⟩
=
⟨
ψ
H
|
A.
^
H
(
t
)
|
ψ
H
⟩
{\ displaystyle {\ begin {aligned} a & = \ langle \ psi _ {\ text {S}} (t) | {\ hat {A}} _ {\ text {S}} (t) | \ psi _ { \ text {S}} (t) \ rangle = \ langle \ psi _ {\ text {S}} (t) | \ underbrace {{\ hat {U}} (t) {\ hat {U}} ^ { \ dagger} (t)} _ {1} \, {\ hat {A}} _ {\ text {S}} (t) \, \ underbrace {{\ hat {U}} (t) {\ hat { U}} ^ {\ dagger} (t)} _ {1} \, | \ psi _ {\ text {S}} (t) \ rangle \\ & = \ langle {\ hat {U}} ^ {\ dagger} (t) \ psi _ {\ text {S}} (t) | {\ hat {U}} ^ {\ dagger} (t) \, {\ hat {A}} _ {\ text {S} } (t) \, {\ hat {U}} (t) \, | {\ hat {U}} ^ {\ dagger} (t) \ psi _ {\ text {S}} (t) \ rangle = \ langle \ psi _ {\ text {S}} (0) | {\ hat {U}} ^ {\ dagger} (t) \, {\ hat {A}} _ {\ text {S}} (t ) \, {\ hat {U}} (t) | \ psi _ {\ text {S}} (0) \ rangle \\\\ & = \ langle \ psi _ {\ text {H}} | {\ hat {A}} _ {\ text {H}} (t) | \ psi _ {\ text {H}} \ rangle \ end {aligned}}}
The operator in the Heisenberg picture is thus given by the operator in the Schrödinger picture:
A.
^
H
(
t
)
{\ displaystyle {\ hat {A}} _ {\ rm {H}} (t)}
A.
^
S.
(
t
)
{\ displaystyle {\ hat {A}} _ {\ rm {S}} (t)}
A.
^
H
(
t
)
=
U
^
†
(
t
)
A.
^
S.
(
t
)
U
^
(
t
)
{\ displaystyle {\ hat {A}} _ {\ rm {H}} (t) = {\ hat {U}} ^ {\ dagger} (t) \, {\ hat {A}} _ {\ rm {S}} (t) \, {\ hat {U}} (t)}
In general, the operator can be time-dependent both in the Heisenberg picture and in the Schrödinger picture, an example of this is a Hamilton operator with a time-dependent potential .
A.
^
{\ displaystyle {\ hat {A}}}
The Schrödinger equation for time-dependent wave functions is replaced in the Heisenberg picture by Heisenberg's equation of motion :
d
d
t
A.
^
H
(
t
)
=
∂
∂
t
A.
^
H
(
t
)
+
i
ℏ
[
H
^
H
(
t
)
,
A.
^
H
(
t
)
]
{\ displaystyle {\ frac {\ mathrm {d}} {\ mathrm {d} t}} {\ hat {A}} _ {\ rm {H}} (t) = {\ partial \ over \ partial t} {\ hat {A}} _ {\ rm {H}} (t) + {i \ over \ hbar} [{\ hat {H}} _ {\ rm {H}} (t) {\ mbox {, }} {\ hat {A}} _ {\ rm {H}} (t)]}
in which
[
H
^
H
(
t
)
,
A.
^
H
(
t
)
]
{\ displaystyle \ left [{\ hat {H}} _ {\ rm {H}} (t), {\ hat {A}} _ {\ rm {H}} (t) \ right]}
the commutator from the Hamilton operator and is and
H
^
H
(
t
)
{\ displaystyle {\ hat {H}} _ {\ rm {H}} (t)}
A.
^
H
(
t
)
{\ displaystyle {\ hat {A}} _ {\ rm {H}} (t)}
∂
∂
t
A.
^
H
(
t
)
{\ displaystyle {\ partial \ over \ partial t} {\ hat {A}} _ {\ rm {H}} (t)}
as an abbreviation for read.
U
†
(
t
)
(
∂
∂
t
A.
^
S.
(
t
)
)
U
(
t
)
{\ displaystyle U ^ {\ dagger} (t) \ left ({\ partial \ over \ partial t} {\ hat {A}} _ {\ rm {S}} (t) \ right) U (t)}
If the Hamilton operator in the Schrödinger picture does not depend on time, then:
H
^
S.
{\ displaystyle {\ hat {H}} _ {\ rm {S}}}
H
^
H
(
t
)
=
H
^
S.
{\ displaystyle {\ hat {H}} _ {\ rm {H}} (t) = {\ hat {H}} _ {\ rm {S}}}
The observable is called the conserved quantity if
A.
^
{\ displaystyle {\ hat {A}}}
d
d
t
A.
^
H
(
t
)
=
0
{\ displaystyle {\ frac {\ mathrm {d}} {\ mathrm {d} t}} {\ hat {A}} _ {\ rm {H}} (t) = 0}
.
If this condition applies, it is also time-independent.
⟨
A.
⟩
{\ displaystyle \ langle A \ rangle}
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">