Hilbert module area

from Wikipedia, the free encyclopedia

In mathematics , Hilbert's module surfaces are certain complex algebraic surfaces that are obtained as the quotient of the product of two hyperbolic planes .

construction

Let be a totally real square number field , i.e. for a square-free natural number .

Let be the wholeness ring of , i.e. with if congruent 2 or 3 mod 4 and if congruent 1 mod 4.

Be the embeddings of , so

for everyone .

The images define embeddings .

The Hilbert module group is the image from under the embedding

.

The group SL (2, R) acts on the hyperbolic level through fractional-linear transformations . By means of the embedding after acts on , the product of two hyperbolic planes.

If a subgroup is of finite index , then the quotient space is called Hilbert's module area and Hilbert's module group . Hilbert module groups are examples of arithmetic groups .

If a Hilbert module group is torsion-free , then the Hilbert module area is a locally symmetrical space , otherwise the Hilbert module area has singularities .

Algebraic surfaces

Friedrich Hirzebruch and Don Zagier give a classification of Hilbert module surfaces from the point of view of algebraic geometry .

Number theory

The geometry of the Hilbert module surface encodes properties of the body . For example, the number of ends of Hilbert's module area is equal to the class number of . The volume of Hilbert's module area is , where is the Dedekind zeta function of the body .

swell

  1. Hirzebruch, Zagier: Classification of Hilbert modular surfaces , in: WL Baily, T. Shioda (Ed.): Complex analysis and algebraic geometry, Cambridge University Press, 1977, pp. 43-77, online . (PDF; 1.4 MB)
  2. Chapter III.2.7. in: Armand Borel , Lizhen Ji : Compactifications of symmetric and locally symmetric spaces. Mathematics: Theory & Applications. Birkhauser Boston, Inc., Boston, MA, 2006. ISBN 978-0-8176-3247-2
  3. Gerard van der Geer : Hilbert modular surfaces. Results of mathematics and their border areas (3), 16. Springer-Verlag, Berlin, 1988. ISBN 3-540-17601-2