This article is about a complex calculus lemma. It should not be confused with 
Black's phrase  .
 
 
 
The Schwarz Lemma  (by Hermann Schwarz  ) is a set of function theory  about holomorphic  self-images of the unit disk, which detects the zero point blank.
statement  
Let it denote the open unit disk. Be a holomorphic function  with . Then applies to all and . If in one point the equality also exists or applies, then a rotation, i.e. H. for a suitable .
  
    
      
        
          D. 
         
        : = 
        
          { 
          
            z 
            ∈ 
            
              C. 
             
             
            : 
             
            
              | 
             
            z 
            
              | 
             
            < 
            1 
           
          } 
         
       
     
    {\ displaystyle \ mathbb {D}: = \ left \ {z \ in \ mathbb {C} \,: \, | z | <1 \ right \}} 
   
 
  
    
      
        f 
        : 
        
          D. 
         
        → 
        
          D. 
         
       
     
    {\ displaystyle f \ colon \ mathbb {D} \ to \ mathbb {D}} 
   
 
  
    
      
        f 
        ( 
        0 
        ) 
        = 
        0 
       
     
    {\ displaystyle f (0) = 0} 
   
 
  
    
      
        
          | 
         
        f 
        ( 
        z 
        ) 
        
          | 
         
        ≤ 
        
          | 
         
        z 
        
          | 
         
       
     
    {\ displaystyle | f (z) | \ leq | z |} 
   
 
  
    
      
        z 
        ∈ 
        
          D. 
         
       
     
    {\ displaystyle z \ in \ mathbb {D}} 
   
 
  
    
      
        
          | 
         
        
          f 
          ′ 
         
        ( 
        0 
        ) 
        
          | 
         
        ≤ 
        1 
       
     
    {\ displaystyle | f '(0) | \ leq 1} 
   
 
  
    
      
        
          z 
          
            0 
           
         
        ∈ 
        
          D. 
         
        , 
        
          z 
          
            0 
           
         
        ≠ 
        0 
        , 
       
     
    {\ displaystyle z_ {0} \ in \ mathbb {D}, z_ {0} \ neq 0,} 
   
 
  
    
      
        
          | 
         
        f 
        ( 
        
          z 
          
            0 
           
         
        ) 
        
          | 
         
        = 
        
          | 
         
        
          z 
          
            0 
           
         
        
          | 
         
       
     
    {\ displaystyle | f (z_ {0}) | = | z_ {0} |} 
   
 
  
    
      
        
          | 
         
        
          f 
          ′ 
         
        ( 
        0 
        ) 
        
          | 
         
        = 
        1 
       
     
    {\ displaystyle | f '(0) | = 1} 
   
 
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
 
  
    
      
        f 
        ( 
        z 
        ) 
        = 
        
          e 
          
            i 
            λ 
           
         
        ⋅ 
        z 
       
     
    {\ displaystyle f (z) = e ^ {i \ lambda} \ cdot z} 
   
 
  
    
      
        λ 
        ∈ 
        
          R. 
         
       
     
    {\ displaystyle \ lambda \ in \ mathbb {R}} 
   
  
proof  
Let be the Taylor expansion  of around the point . Because is so the function
  
    
      
        f 
        ( 
        z 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            0 
           
          
            ∞ 
           
         
        
          a 
          
            n 
           
         
        
          z 
          
            n 
           
         
       
     
    {\ displaystyle f (z) = \ sum _ {n = 0} ^ {\ infty} a_ {n} z ^ {n}} 
   
 
  
    
      
        f 
       
     
    {\ displaystyle f} 
   
 
  
    
      
        z 
        = 
        0 
       
     
    {\ displaystyle z = 0} 
   
 
  
    
      
        f 
        ( 
        0 
        ) 
        = 
        0 
       
     
    {\ displaystyle f (0) = 0} 
   
 
  
    
      
        
          a 
          
            0 
           
         
        = 
        0 
       
     
    {\ displaystyle a_ {0} = 0} 
   
  
  
    
      
        G 
        ( 
        z 
        ) 
        : = 
        
          
            { 
            
              
                
                  
                    
                      
                        f 
                        ( 
                        z 
                        ) 
                       
                      z 
                     
                   
                  , 
                 
                
                  
                    if  
                   
                  z 
                  ≠ 
                  0 
                  , 
                 
               
              
                
                  
                    f 
                    ′ 
                   
                  ( 
                  0 
                  ) 
                  , 
                 
                
                  
                    otherwise 
                   
                 
               
             
             
           
         
       
     
    {\ displaystyle g (z): = {\ begin {cases} {\ frac {f (z)} {z}}, & {\ text {if}} z \ not = 0, \\ f '(0) , & {\ text {otherwise}} \ end {cases}}} 
   
  
is holomorphic and has the Taylor expansion around zero. After the maximum principle  the function takes on the circle , their maximum on the edge of. The following applies there:
  
    
      
        
          D. 
         
       
     
    {\ displaystyle \ mathbb {D}} 
   
 
  
    
      
        G 
        ( 
        z 
        ) 
        = 
        
          ∑ 
          
            n 
            = 
            1 
           
          
            ∞ 
           
         
        
          a 
          
            n 
           
         
        
          z 
          
            n 
            - 
            1 
           
         
       
     
    {\ displaystyle g (z) = \ sum _ {n = 1} ^ {\ infty} a_ {n} z ^ {n-1}} 
   
 
  
    
      
        G 
       
     
    {\ displaystyle g} 
   
 
  
    
      
        
          K 
          
            r 
           
         
        : = 
        { 
        z 
        ∈ 
        
          C. 
         
        ∣ 
        
          | 
         
        z 
        
          | 
         
        ≤ 
        r 
        } 
       
     
    {\ displaystyle K_ {r}: = \ {z \ in \ mathbb {C} \ mid | z | \ leq r \}} 
   
 
  
    
      
        r 
        ∈ 
        ( 
        0 
        , 
        1 
        ) 
       
     
    {\ displaystyle r \ in (0,1)} 
   
 
  
    
      
        ∂ 
        
          K 
          
            r 
           
         
        = 
        { 
        z 
        ∈ 
        
          C. 
         
        ∣ 
        
          | 
         
        z 
        
          | 
         
        = 
        r 
        } 
       
     
    {\ displaystyle \ partial K_ {r} = \ {z \ in \ mathbb {C} \ mid | z | = r \}} 
   
  
  
    
      
        
          | 
         
        G 
        ( 
        z 
        ) 
        
          | 
         
        = 
        
          | 
          
            
              
                f 
                ( 
                z 
                ) 
               
              z 
             
           
          | 
         
        = 
        
          
            
              
                | 
               
              f 
              ( 
              z 
              ) 
              
                | 
               
             
            r 
           
         
        ≤ 
        
          
            1 
            r 
           
         
        , 
       
     
    {\ displaystyle | g (z) | = \ left | {\ frac {f (z)} {z}} \ right | = {\ frac {| f (z) |} {r}} \ leq {\ frac {1} {r}},} 
   
  
so that | g (z) | is limited to all through . Since is arbitrary, the border crossing already follows and thus for everyone 
 . Furthermore is .
  
    
      
        
          K 
          
            r 
           
         
       
     
    {\ displaystyle K_ {r}} 
   
 
  
    
      
        
          
            1 
            r 
           
         
       
     
    {\ displaystyle {\ frac {1} {r}}} 
   
 
  
    
      
        0 
        < 
        r 
        < 
        1 
       
     
    {\ displaystyle 0 <r <1} 
   
 
  
    
      
        r 
        → 
        1 
       
     
    {\ displaystyle r \ to 1} 
   
 
  
    
      
        
          | 
         
        G 
        ( 
        z 
        ) 
        
          | 
         
        ≤ 
        1 
       
     
    {\ displaystyle | g (z) | \ leq 1} 
   
 
  
    
      
        
          | 
         
        f 
        ( 
        z 
        ) 
        
          | 
         
        ≤ 
        
          | 
         
        z 
        
          | 
         
       
     
    {\ displaystyle | f (z) | \ leq | z |} 
   
 
  
    
      
        z 
        ∈ 
        
          D. 
         
       
     
    {\ displaystyle z \ in \ mathbb {D}} 
   
 
  
    
      
        
          | 
         
        
          f 
          ′ 
         
        ( 
        0 
        ) 
        
          | 
         
        = 
        
          | 
         
        G 
        ( 
        0 
        ) 
        
          | 
         
        ≤ 
        1 
       
     
    {\ displaystyle | f '(0) | = | g (0) | \ leq 1} 
   
 
Additionally, if one with exists or is true, then there is one with . With the maximum principle it follows that is constant, i.e. for a with . So it applies .
  
    
      
        
          z 
          
            0 
           
         
        ∈ 
        
          D. 
         
       
     
    {\ displaystyle z_ {0} \ in \ mathbb {D}} 
   
 
  
    
      
        
          | 
         
        f 
        ( 
        
          z 
          
            0 
           
         
        ) 
        
          | 
         
        = 
        
          | 
         
        
          z 
          
            0 
           
         
        
          | 
         
       
     
    {\ displaystyle | f (z_ {0}) | = | z_ {0} |} 
   
 
  
    
      
        
          | 
         
        
          f 
          ′ 
         
        ( 
        0 
        ) 
        
          | 
         
        = 
        1 
       
     
    {\ displaystyle | f '(0) | = 1} 
   
 
  
    
      
        
          z 
          
            0 
           
         
        ∈ 
        
          D. 
         
       
     
    {\ displaystyle z_ {0} \ in \ mathbb {D}} 
   
 
  
    
      
        
          | 
         
        G 
        ( 
        
          z 
          
            0 
           
         
        ) 
        
          | 
         
        = 
        1 
       
     
    {\ displaystyle | g (z_ {0}) | = 1} 
   
 
  
    
      
        G 
       
     
    {\ displaystyle g} 
   
 
  
    
      
        G 
        ( 
        z 
        ) 
        = 
        c 
       
     
    {\ displaystyle g (z) = c} 
   
 
  
    
      
        c 
       
     
    {\ displaystyle c} 
   
 
  
    
      
        
          | 
         
        c 
        
          | 
         
        = 
        1 
       
     
    {\ displaystyle | c | = 1} 
   
 
  
    
      
        f 
        ( 
        z 
        ) 
        = 
        c 
        ⋅ 
        z 
       
     
    {\ displaystyle f (z) = c \ cdot z} 
   
 
Applications  
Determination of holomorphic automorphism  of the unit disc: .
  
    
      
        
          A. 
          u 
          t 
         
        ( 
        
          D. 
         
        ) 
        = 
        
          { 
          
            f 
            ( 
            z 
            ) 
            = 
            
              e 
              
                i 
                λ 
               
             
            
              
                
                  z 
                  - 
                  
                    z 
                    
                      0 
                     
                   
                 
                
                  1 
                  - 
                  
                    
                      
                        z 
                        
                          0 
                         
                       
                      ¯ 
                     
                   
                  z 
                 
               
             
             
            , 
             
            λ 
            ∈ 
            [ 
            0 
            , 
            2 
            π 
            ) 
            , 
             
            
              z 
              
                0 
               
             
            ∈ 
            
              D. 
             
           
          } 
         
       
     
    {\ displaystyle \ mathrm {Aut} (\ mathbb {D}) = \ left \ {f (z) = e ^ {i \ lambda} {\ frac {z-z_ {0}} {1 - {\ overline { z_ {0}}} z}} \;, \; \ lambda \ in [0,2 \ pi), \; z_ {0} \ in \ mathbb {D} \ right \}} 
   
   
From this one can determine and obtain the automorphism group of the upper half-plane .
  
    
      
        
          H 
         
       
     
    {\ displaystyle \ mathbb {H}} 
   
 
  
    
      
        
          A. 
          u 
          t 
         
        ( 
        
          H 
         
        ) 
        ≅ 
        P 
        S. 
        L. 
        ( 
        2 
        , 
        
          R. 
         
        ) 
       
     
    {\ displaystyle \ mathrm {Aut} (\ mathbb {H}) \ cong PSL (2, \ mathbb {R})} 
   
   
Schwarz's lemma is one of the tools used in the modern proof of Riemann's mapping theorem carried out  with the help of normal families . 
Lemma von Schwarz-Pick  : For holomorphic functions applies to all .
  
    
      
        f 
        : 
        
          D. 
         
        → 
        
          D. 
         
       
     
    {\ displaystyle f: \ mathbb {D} \ to \ mathbb {D}} 
   
 
  
    
      
        
          
            
              
                | 
               
              
                f 
                ′ 
               
              ( 
              z 
              ) 
              
                | 
               
             
            
              1 
              - 
              
                | 
               
              f 
              ( 
              z 
              ) 
              
                
                  | 
                 
                
                  2 
                 
               
             
           
         
        ≤ 
        
          
            1 
            
              1 
              - 
              
                | 
               
              z 
              
                
                  | 
                 
                
                  2 
                 
               
             
           
         
       
     
    {\ displaystyle {\ frac {| f '(z) |} {1- | f (z) | ^ {2}}} \ leq {\ frac {1} {1- | z | ^ {2}}} } 
   
 
  
    
      
        z 
        ∈ 
        
          D. 
         
       
     
    {\ displaystyle z \ in \ mathbb {D}} 
   
  
 
Tightening 
 
Among other things, Schwarz's lemma states that the condition applies to a holomorphic function with expansion in the power series . Ludwig Bieberbach  showed that this also applies to injective functions , and put forward the  Bieberbach hypothesis  , later named after him , that for all . This conjecture was proven in 1985 by  Louis de Branges de Bourcia  .
  
    
      
        f 
        : 
        
          D. 
         
        → 
        
          D. 
         
       
     
    {\ displaystyle f: \ mathbb {D} \ to \ mathbb {D}} 
   
 
  
    
      
        f 
        ( 
        0 
        ) 
        = 
        0 
       
     
    {\ displaystyle f (0) = 0} 
   
 
  
    
      
        f 
        ( 
        z 
        ) 
        = 
        
          ∑ 
          
            j 
            = 
            1 
           
          
            ∞ 
           
         
        
          a 
          
            j 
           
         
        
          z 
          
            j 
           
         
       
     
    {\ displaystyle f (z) = \ sum _ {j = 1} ^ {\ infty} a_ {j} z ^ {j}} 
   
 
  
    
      
        
          | 
         
        
          a 
          
            1 
           
         
        
          | 
         
        ≤ 
        1 
       
     
    {\ displaystyle | a_ {1} | \ leq 1} 
   
 
  
    
      
        
          | 
         
        
          a 
          
            2 
           
         
        
          | 
         
        ≤ 
        2 
       
     
    {\ displaystyle | a_ {2} | \ leq 2} 
   
 
  
    
      
        
          | 
         
        
          a 
          
            j 
           
         
        
          | 
         
        ≤ 
        j 
       
     
    {\ displaystyle | a_ {j} | \ leq j} 
   
 
  
    
      
        j 
        ∈ 
        
          N 
         
         
       
     
    {\ displaystyle j \ in \ mathbb {N} \;} 
   
  
literature  
Wolfgang Fischer, Ingo Lieb: Function theory.  Vieweg Verlag, Braunschweig 2003, ISBN 3-528-77247-6 
  
 
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">