In mathematics  , especially in algebra  , the Newton identities combine  two fundamental types of symmetric polynomials  in a number n  of variables , the elementary symmetric polynomials
  
    
      
        
          X 
          
            1 
           
         
        , 
        ... 
        , 
        
          X 
          
            n 
           
         
       
     
    {\ displaystyle X_ {1}, \ dots, X_ {n}} 
   
 
  
    
      
        
          σ 
          
            k 
           
         
        ( 
        
          X 
          
            1 
           
         
        , 
        ... 
        , 
        
          X 
          
            n 
           
         
        ) 
        = 
        
          ∑ 
          
            1 
            ≤ 
            
              j 
              
                1 
               
             
            < 
            ⋯ 
            < 
            
              j 
              
                k 
               
             
            ≤ 
            n 
           
         
        
          X 
          
            
              j 
              
                1 
               
             
           
         
        ⋅ 
        ... 
        ⋅ 
        
          X 
          
            
              j 
              
                k 
               
             
           
         
       
     
    {\ displaystyle \ sigma _ {k} (X_ {1}, \ dots, X_ {n}) = \ sum _ {1 \ leq j_ {1} <\ dots <j_ {k} \ leq n} X_ {j_ {1}} \ cdot \ ldots \ cdot X_ {j_ {k}}} 
   
 
  
    
      
        k 
        = 
        0 
        , 
        1 
        , 
        ... 
        , 
        n 
       
     
    {\ displaystyle k = 0.1, \ dots, n} 
   
  and the power sums
  
    
      
        
          s 
          
            m 
           
         
        ( 
        
          X 
          
            1 
           
         
        , 
        ... 
        , 
        
          X 
          
            n 
           
         
        ) 
        = 
        
          X 
          
            1 
           
          
            m 
           
         
        + 
        ... 
        + 
        
          X 
          
            n 
           
          
            m 
           
         
       
     
    {\ displaystyle s_ {m} (X_ {1}, \ dots, X_ {n}) = X_ {1} ^ {m} + \ ldots + X_ {n} ^ {m}} 
   
 
  
    
      
        m 
        = 
        0 
        , 
        1 
        , 
        2 
        , 
        ... 
       
     
    {\ displaystyle m = 0,1,2, \ dots} 
   
  These identities are generally traced back to the considerations of Isaac Newton  around 1666, but they can also be found by Albert Girard  in 1629. Applications of these identities can be found in Galois theory  , invariant theory  , group theory  , combinatorics  , but also outside of mathematics, for example in general relativity  .
Derivation by means of formal power series Let T be  the variable in the ring of the formal power series   . Then, analogously to Vieta's theorem  ,
  
    
      
        
          Q 
         
        [ 
        
          X 
          
            1 
           
         
        , 
        ... 
        , 
        
          X 
          
            n 
           
         
        ] 
        [ 
        [ 
        T 
        ] 
        ] 
       
     
    {\ displaystyle \ mathbb {Q} [X_ {1}, \ dots, X_ {n}] [[T]]} 
   
  
  
    
      
        p 
        ( 
        T 
        ) 
        = 
        ( 
        1 
        + 
        T 
        
          X 
          
            1 
           
         
        ) 
        ( 
        1 
        + 
        T 
        
          X 
          
            2 
           
         
        ) 
        ... 
        ( 
        1 
        + 
        T 
        
          X 
          
            n 
           
         
        ) 
        = 
        1 
        + 
        
          σ 
          
            1 
           
         
        T 
        + 
        
          σ 
          
            2 
           
         
        
          T 
          
            2 
           
         
        + 
        ⋯ 
        + 
        
          σ 
          
            n 
           
         
        
          T 
          
            n 
           
         
       
     
    {\ displaystyle p (T) = (1 + TX_ {1}) (1 + TX_ {2}) \ dots (1 + TX_ {n}) = 1+ \ sigma _ {1} T + \ sigma _ {2} T ^ {2} + \ dots + \ sigma _ {n} T ^ {n}} 
   
  Since the polynomial p (T) has  a constant coefficient 1  , it can be inverted in the ring of formal power series. For the logarithmic derivation  results
  
    
      
        
          
            
              
                p 
                ′ 
               
              ( 
              T 
              ) 
             
            
              p 
              ( 
              T 
              ) 
             
           
         
        = 
        
          
            
              X 
              
                1 
               
             
            
              1 
              + 
              T 
              
                X 
                
                  1 
                 
               
             
           
         
        + 
        ⋯ 
        + 
        
          
            
              X 
              
                n 
               
             
            
              1 
              + 
              T 
              
                X 
                
                  n 
                 
               
             
           
         
       
     
    {\ displaystyle {\ frac {p '(T)} {p (T)}} = {\ frac {X_ {1}} {1 + TX_ {1}}} + \ dots + {\ frac {X_ {n }} {1 + TX_ {n}}}} 
   
  The quotients on the right also exist as formal power series; they result as geometric series  . Thus applies
  
    
      
        
          
            
              
                p 
                ′ 
               
              ( 
              T 
              ) 
             
            
              p 
              ( 
              T 
              ) 
             
           
         
        = 
        
          X 
          
            1 
           
         
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        ( 
        - 
        T 
        
          X 
          
            1 
           
         
        
          ) 
          
            m 
           
         
        + 
        ⋯ 
        + 
        
          X 
          
            n 
           
         
        
          ∑ 
          
            m 
            = 
            0 
           
          
            ∞ 
           
         
        ( 
        - 
        T 
        
          X 
          
            n 
           
         
        
          ) 
          
            m 
           
         
        = 
        
          ∑ 
          
            m 
            = 
            1 
           
          
            ∞ 
           
         
        
          s 
          
            m 
           
         
        ( 
        - 
        T 
        
          ) 
          
            m 
            - 
            1 
           
         
       
     
    {\ displaystyle {\ frac {p '(T)} {p (T)}} = X_ {1} \ sum _ {m = 0} ^ {\ infty} (- TX_ {1}) ^ {m} + \ dots + X_ {n} \ sum _ {m = 0} ^ {\ infty} (- TX_ {n}) ^ {m} = \ sum _ {m = 1} ^ {\ infty} s_ {m} ( -T) ^ {m-1}} 
   
  This can now be transformed into
  
    
      
        
          σ 
          
            1 
           
         
        + 
        2 
        
          σ 
          
            2 
           
         
        T 
        + 
        ⋯ 
        + 
        n 
        
          σ 
          
            n 
           
         
        
          T 
          
            n 
            - 
            1 
           
         
        = 
        ( 
        1 
        + 
        
          σ 
          
            1 
           
         
        T 
        + 
        ⋯ 
        + 
        
          σ 
          
            n 
           
         
        
          T 
          
            n 
           
         
        ) 
        ⋅ 
        ( 
        
          s 
          
            1 
           
         
        - 
        
          s 
          
            2 
           
         
        T 
        + 
        
          s 
          
            3 
           
         
        
          T 
          
            2 
           
         
        - 
        
          s 
          
            4th 
           
         
        
          T 
          
            3 
           
         
        ± 
        ... 
        ) 
       
     
    {\ displaystyle \ sigma _ {1} +2 \ sigma _ {2} T + \ dots + n \ sigma _ {n} T ^ {n-1} = (1+ \ sigma _ {1} T + \ dots + \ sigma _ {n} T ^ {n}) \ cdot (s_ {1} -s_ {2} T + s_ {3} T ^ {2} -s_ {4} T ^ {3} \ pm \ dots)} 
   
  By comparing equal powers of T  on both sides, a system of equations results for determining the elementary symmetric polynomials from the power series and vice versa,
  
    
      
        
          
            
              
                
                  σ 
                  
                    1 
                   
                 
               
              
                = 
                
                  s 
                  
                    1 
                   
                 
               
             
            
              
                2 
                
                  σ 
                  
                    2 
                   
                 
               
              
                = 
                
                  s 
                  
                    1 
                   
                 
                
                  σ 
                  
                    1 
                   
                 
                - 
                
                  s 
                  
                    2 
                   
                 
               
             
            
              
                3 
                
                  σ 
                  
                    3 
                   
                 
               
              
                = 
                
                  s 
                  
                    1 
                   
                 
                
                  σ 
                  
                    2 
                   
                 
                - 
                
                  s 
                  
                    2 
                   
                 
                
                  σ 
                  
                    1 
                   
                 
                + 
                
                  s 
                  
                    3 
                   
                 
               
             
            
              
                4th 
                
                  σ 
                  
                    4th 
                   
                 
               
              
                = 
                
                  s 
                  
                    1 
                   
                 
                
                  σ 
                  
                    3 
                   
                 
                - 
                
                  s 
                  
                    2 
                   
                 
                
                  σ 
                  
                    2 
                   
                 
                + 
                
                  s 
                  
                    3 
                   
                 
                
                  σ 
                  
                    1 
                   
                 
                - 
                
                  s 
                  
                    4th 
                   
                 
               
             
            
              
                
                  Etc. 
                 
                 
             
            
              
                k 
                
                  σ 
                  
                    k 
                   
                 
               
              
                = 
                
                  s 
                  
                    1 
                   
                 
                
                  σ 
                  
                    k 
                    - 
                    1 
                   
                 
                - 
                
                  s 
                  
                    2 
                   
                 
                
                  σ 
                  
                    k 
                    - 
                    2 
                   
                 
                + 
                
                  s 
                  
                    3 
                   
                 
                
                  σ 
                  
                    k 
                    - 
                    3 
                   
                 
                ± 
                ... 
                + 
                ( 
                - 
                1 
                
                  ) 
                  
                    k 
                    - 
                    2 
                   
                 
                
                  s 
                  
                    k 
                    - 
                    1 
                   
                 
                
                  σ 
                  
                    1 
                   
                 
                + 
                ( 
                - 
                1 
                
                  ) 
                  
                    k 
                    - 
                    1 
                   
                 
                
                  s 
                  
                    k 
                   
                 
               
             
           
         
       
     
    {\ displaystyle {\ begin {aligned} \ sigma _ {1} & = s_ {1} \\ [. 3em] 2 \, \ sigma _ {2} & = s_ {1} \, \ sigma _ {1} -s_ {2} \\ [. 3em] 3 \, \ sigma _ {3} & = s_ {1} \, \ sigma _ {2} -s_ {2} \, \ sigma _ {1} + s_ { 3} \\ [. 3em] 4 \, \ sigma _ {4} & = s_ {1} \, \ sigma _ {3} -s_ {2} \, \ sigma _ {2} + s_ {3} \ , \ sigma _ {1} -s_ {4} \\ [. 3em] {\ text {etc.}} \ qquad \\ [. 3em] k \, \ sigma _ {k} & = s_ {1} \ , \ sigma _ {k-1} -s_ {2} \, \ sigma _ {k-2} + s_ {3} \, \ sigma _ {k-3} \ pm \ ldots + (- 1) ^ { k-2} s_ {k-1} \, \ sigma _ {1} + (- 1) ^ {k-1} s_ {k} \\ [. 3em] \ end {aligned}}} 
   
 These relationships can be solved by performing the division of formal power series in p '(T) / p (T)  according to the power sums, the following applies
  
    
      
        
          s 
          
            1 
           
         
        = 
       
     
    {\ displaystyle s_ {1} \, =} 
   
  
  
    
      
        
          σ 
          
            1 
           
         
        , 
         
     
    {\ displaystyle \ sigma _ {1}, \,} 
   
  
 
  
    
      
        
          s 
          
            2 
           
         
        = 
       
     
    {\ displaystyle s_ {2} \, =} 
   
  
  
    
      
        
          σ 
          
            1 
           
          
            2 
           
         
        - 
        2 
        
          σ 
          
            2 
           
         
        , 
       
     
    {\ displaystyle \ sigma _ {1} ^ {2} -2 \, \ sigma _ {2},} 
   
  
 
  
    
      
        
          s 
          
            3 
           
         
        = 
       
     
    {\ displaystyle s_ {3} \, =} 
   
  
  
    
      
        
          σ 
          
            1 
           
          
            3 
           
         
        - 
        3 
        
          σ 
          
            1 
           
         
        
          σ 
          
            2 
           
         
        + 
        3 
        
          σ 
          
            3 
           
         
        , 
       
     
    {\ displaystyle \ sigma _ {1} ^ {3} -3 \, \ sigma _ {1} \, \ sigma _ {2} +3 \, \ sigma _ {3},} 
   
  
 
  
    
      
        
          s 
          
            4th 
           
         
        = 
       
     
    {\ displaystyle s_ {4} \, =} 
   
  
  
    
      
        
          σ 
          
            1 
           
          
            4th 
           
         
        - 
        4th 
        
          σ 
          
            1 
           
          
            2 
           
         
        
          σ 
          
            2 
           
         
        + 
        4th 
        
          σ 
          
            1 
           
         
        
          σ 
          
            3 
           
         
        + 
        2 
        
          σ 
          
            2 
           
          
            2 
           
         
        - 
        4th 
        
          σ 
          
            4th 
           
         
        , 
       
     
    {\ displaystyle \ sigma _ {1} ^ {4} -4 \, \ sigma _ {1} ^ {2} \, \ sigma _ {2} +4 \, \ sigma _ {1} \, \ sigma _ {3} +2 \, \ sigma _ {2} ^ {2} -4 \, \ sigma _ {4},} 
   
  
 
  
    
      
        
          s 
          
            5 
           
         
        = 
       
     
    {\ displaystyle s_ {5} \, =} 
   
  
  
    
      
        
          σ 
          
            1 
           
          
            5 
           
         
        - 
        5 
        
          σ 
          
            1 
           
          
            3 
           
         
        
          σ 
          
            2 
           
         
        + 
        5 
        
          σ 
          
            1 
           
          
            2 
           
         
        
          σ 
          
            3 
           
         
        + 
        5 
        
          σ 
          
            1 
           
         
        
          σ 
          
            2 
           
          
            2 
           
         
        - 
        5 
        
          σ 
          
            1 
           
         
        
          σ 
          
            4th 
           
         
        - 
        5 
        
          σ 
          
            2 
           
         
        
          σ 
          
            3 
           
         
        + 
        5 
        
          σ 
          
            5 
           
         
        , 
       
     
    {\ displaystyle \ sigma _ {1} ^ {5} -5 \, \ sigma _ {1} ^ {3} \, \ sigma _ {2} +5 \, \ sigma _ {1} ^ {2} \ , \ sigma _ {3} +5 \, \ sigma _ {1} \, \ sigma _ {2} ^ {2} -5 \, \ sigma _ {1} \, \ sigma _ {4} -5 \ , \ sigma _ {2} \, \ sigma _ {3} +5 \, \ sigma _ {5},} 
   
  
 
  
    
      
        
          s 
          
            6th 
           
         
        = 
       
     
    {\ displaystyle s_ {6} \, =} 
   
  
  
    
      
        
          σ 
          
            1 
           
          
            6th 
           
         
        - 
        6th 
        
          σ 
          
            1 
           
          
            4th 
           
         
        
          σ 
          
            2 
           
         
        + 
        6th 
        
          σ 
          
            1 
           
          
            3 
           
         
        
          σ 
          
            3 
           
         
        + 
        9 
        
          σ 
          
            1 
           
          
            2 
           
         
        
          σ 
          
            2 
           
          
            2 
           
         
        - 
        6th 
        
          σ 
          
            1 
           
          
            2 
           
         
        
          σ 
          
            4th 
           
         
        - 
        12 
        
          σ 
          
            1 
           
         
        
          σ 
          
            2 
           
         
        
          σ 
          
            3 
           
         
        + 
        6th 
        
          σ 
          
            1 
           
         
        
          σ 
          
            5 
           
         
        - 
        2 
        
          σ 
          
            2 
           
          
            3 
           
         
        + 
        6th 
        
          σ 
          
            2 
           
         
        
          σ 
          
            4th 
           
         
        + 
        3 
        
          σ 
          
            3 
           
          
            2 
           
         
        - 
        6th 
        
          σ 
          
            6th 
           
         
        , 
       
     
    {\ displaystyle \ sigma _ {1} ^ {6} -6 \, \ sigma _ {1} ^ {4} \, \ sigma _ {2} +6 \, \ sigma _ {1} ^ {3} \ , \ sigma _ {3} +9 \, \ sigma _ {1} ^ {2} \, \ sigma _ {2} ^ {2} -6 \, \ sigma _ {1} ^ {2} \, \ sigma _ {4} -12 \, \ sigma _ {1} \, \ sigma _ {2} \, \ sigma _ {3} +6 \, \ sigma _ {1} \, \ sigma _ {5} - 2 \, \ sigma _ {2} ^ {3} +6 \, \ sigma _ {2} \, \ sigma _ {4} +3 \, \ sigma _ {3} ^ {2} -6 \, \ sigma _ {6},} 
   
  
 
 
Conversely, the quotient of derivative and function is the derivative of the logarithm, so after integration and application of the exponential function , the following relationships result after coefficient comparison.
  
    
      
        p 
        ( 
        T 
        ) 
        = 
        exp 
         
        ( 
        
          s 
          
            1 
           
         
        T 
        - 
        
          
            1 
            2 
           
         
        
          s 
          
            2 
           
         
        
          T 
          
            2 
           
         
        + 
        
          
            1 
            3 
           
         
        
          s 
          
            3 
           
         
        
          T 
          
            3 
           
         
        ± 
        ... 
        ) 
       
     
    {\ displaystyle p (T) = \ exp (s_ {1} T - {\ frac {1} {2}} s_ {2} T ^ {2} + {\ frac {1} {3}} s_ {3 } T ^ {3} \ pm \ dots)} 
   
 
  
    
      
        
          σ 
          
            1 
           
         
        = 
       
     
    {\ displaystyle \ sigma _ {1} \, =} 
   
  
  
    
      
        
          s 
          
            1 
           
         
        , 
         
     
    {\ displaystyle s_ {1}, \,} 
   
  
 
  
    
      
        
          σ 
          
            2 
           
         
        = 
       
     
    {\ displaystyle \ sigma _ {2} \, =} 
   
  
  
    
      
        
          
            1 
            2 
           
         
        
          s 
          
            1 
           
          
            2 
           
         
        - 
        
          
            1 
            2 
           
         
        
          s 
          
            2 
           
         
        , 
       
     
    {\ displaystyle {\ frac {1} {2}} \, s_ {1} ^ {2} - {\ frac {1} {2}} \, s_ {2},} 
   
  
 
  
    
      
        
          σ 
          
            3 
           
         
        = 
       
     
    {\ displaystyle \ sigma _ {3} \, =} 
   
  
  
    
      
        
          
            1 
            6th 
           
         
        
          s 
          
            1 
           
          
            3 
           
         
        - 
        
          
            1 
            2 
           
         
        
          s 
          
            1 
           
         
        
          s 
          
            2 
           
         
        + 
        
          
            1 
            3 
           
         
        
          s 
          
            3 
           
         
        , 
       
     
    {\ displaystyle {\ frac {1} {6}} \, s_ {1} ^ {3} - {\ frac {1} {2}} \, s_ {1} \, s_ {2} + {\ frac {1} {3}} \, s_ {3},} 
   
  
 
  
    
      
        
          σ 
          
            4th 
           
         
        = 
       
     
    {\ displaystyle \ sigma _ {4} \, =} 
   
  
  
    
      
        
          
            1 
            24 
           
         
        
          s 
          
            1 
           
          
            4th 
           
         
        - 
        
          
            1 
            4th 
           
         
        
          s 
          
            1 
           
          
            2 
           
         
        
          s 
          
            2 
           
         
        + 
        
          
            1 
            3 
           
         
        
          s 
          
            1 
           
         
        
          s 
          
            3 
           
         
        + 
        
          
            1 
            8th 
           
         
        
          s 
          
            2 
           
          
            2 
           
         
        - 
        
          
            1 
            4th 
           
         
        
          s 
          
            4th 
           
         
        , 
       
     
    {\ displaystyle {\ frac {1} {24}} \, s_ {1} ^ {4} - {\ frac {1} {4}} \, s_ {1} ^ {2} \, s_ {2} + {\ frac {1} {3}} \, s_ {1} \, s_ {3} + {\ frac {1} {8}} \, s_ {2} ^ {2} - {\ frac {1 } {4}} \, s_ {4},} 
   
  
 
  
    
      
        
          σ 
          
            5 
           
         
        = 
       
     
    {\ displaystyle \ sigma _ {5} \, =} 
   
  
  
    
      
        
          
            1 
            120 
           
         
        
          s 
          
            1 
           
          
            5 
           
         
        - 
        
          
            1 
            12 
           
         
        
          s 
          
            1 
           
          
            3 
           
         
        
          s 
          
            2 
           
         
        + 
        
          
            1 
            6th 
           
         
        
          s 
          
            1 
           
          
            2 
           
         
        
          s 
          
            3 
           
         
        + 
        
          
            1 
            8th 
           
         
        
          s 
          
            1 
           
         
        
          s 
          
            2 
           
          
            2 
           
         
        - 
        
          
            1 
            4th 
           
         
        
          s 
          
            1 
           
         
        
          s 
          
            4th 
           
         
        - 
        
          
            1 
            6th 
           
         
        
          s 
          
            2 
           
         
        
          s 
          
            3 
           
         
        + 
        
          
            1 
            5 
           
         
        
          s 
          
            5 
           
         
        , 
       
     
    {\ displaystyle {\ frac {1} {120}} \, s_ {1} ^ {5} - {\ frac {1} {12}} \, s_ {1} ^ {3} \, s_ {2} + {\ frac {1} {6}} \, s_ {1} ^ {2} \, s_ {3} + {\ frac {1} {8}} \, s_ {1} \, s_ {2} ^ {2} - {\ frac {1} {4}} \, s_ {1} \, s_ {4} - {\ frac {1} {6}} \, s_ {2} \, s_ {3} + {\ frac {1} {5}} \, s_ {5},} 
   
  
 
  
    
      
        
          σ 
          
            6th 
           
         
        = 
       
     
    {\ displaystyle \ sigma _ {6} \, =} 
   
  
  
    
      
        
          
            1 
            720 
           
         
        
          s 
          
            1 
           
          
            6th 
           
         
        - 
        
          
            1 
            48 
           
         
        
          s 
          
            1 
           
          
            4th 
           
         
        
          s 
          
            2 
           
         
        + 
        
          
            1 
            18th 
           
         
        
          s 
          
            1 
           
          
            3 
           
         
        
          s 
          
            3 
           
         
        + 
        
          
            1 
            16 
           
         
        
          s 
          
            1 
           
          
            2 
           
         
        
          s 
          
            2 
           
          
            2 
           
         
        - 
        
          
            1 
            8th 
           
         
        
          s 
          
            1 
           
          
            2 
           
         
        
          s 
          
            4th 
           
         
        - 
        
          
            1 
            6th 
           
         
        
          s 
          
            1 
           
         
        
          s 
          
            2 
           
         
        
          s 
          
            3 
           
         
        + 
        
          
            1 
            5 
           
         
        
          s 
          
            1 
           
         
        
          s 
          
            5 
           
         
        - 
        
          
            1 
            48 
           
         
        
          s 
          
            2 
           
          
            3 
           
         
        + 
        
          
            1 
            8th 
           
         
        
          s 
          
            2 
           
         
        
          s 
          
            4th 
           
         
        + 
        
          
            1 
            18th 
           
         
        
          s 
          
            3 
           
          
            2 
           
         
        - 
        
          
            1 
            6th 
           
         
        
          s 
          
            6th 
           
         
       
     
    {\ displaystyle {\ frac {1} {720}} \, s_ {1} ^ {6} - {\ frac {1} {48}} \, s_ {1} ^ {4} \, s_ {2} + {\ frac {1} {18}} \, s_ {1} ^ {3} \, s_ {3} + {\ frac {1} {16}} \, s_ {1} ^ {2} \, s_ {2} ^ {2} - {\ frac {1} {8}} \, s_ {1} ^ {2} \, s_ {4} - {\ frac {1} {6}} \, s_ { 1} \, s_ {2} \, s_ {3} + {\ frac {1} {5}} \, s_ {1} \, s_ {5} - {\ frac {1} {48}} \, s_ {2} ^ {3} + {\ frac {1} {8}} \, s_ {2} \, s_ {4} + {\ frac {1} {18}} \, s_ {3} ^ { 2} - {\ frac {1} {6}} \, s_ {6}} 
   
  
 
 
literature 
Jean-Pierre Tignol: Galois's theory of algebraic equations  . World Scientific, Singapore 2001, ISBN 981-02-4541-6  , doi  : 10.1142 / 9789812384904   
 
Peter J. Cameron: Permutation Groups  . Cambridge University Press, 1999, ISBN 0-521-65378-9  (Introduction to Permutation Groups, Including Pólya's Cycle Index, Oligomorphic Permutation Groups, and Their Relationship to Mathematical Logic).  
 
Alan Tucker: Applied Combinatorics  . Wiley, New York 1984, ISBN 0-471-86371-8  (one of the most elementary and understandable textbooks describing the Pólya enumeration formula and cycle index polynomials).  
 
 
 
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">