The omega constant
Ω
{\ displaystyle \ Omega}
is a mathematical constant implied by
Ω
e
Ω
=
1
{\ displaystyle \ Omega e ^ {\ Omega} = 1}
with the Euler's number is defined. It applies
e
{\ displaystyle e}
Ω
=
W.
(
1
)
,
{\ displaystyle \ Omega = W (1),}
where is the Lambert W function . The name comes from the omega function, the second name of Lambert's W function.
W.
{\ displaystyle W}
Ω
{\ displaystyle \ Omega}
The first decimal places of are
Ω
{\ displaystyle \ Omega}
Ω
=
0.567
143290409783872999968662210
...
{\ displaystyle \ Omega = 0 {,} 567143290409783872999968662210 \ dots}
properties
Ω
=
ln
(
1
Ω
)
{\ displaystyle \ Omega = \ ln \ left ({\ frac {1} {\ Omega}} \ right)}
Ω
=
-
ln
(
Ω
)
{\ displaystyle \ Omega = - \ ln (\ Omega)}
Ω
=
e
-
Ω
{\ displaystyle \ Omega = e ^ {- \ Omega}}
If you put on a potency tower that starts with and goes up with , you get :
e
{\ displaystyle e}
-
e
{\ displaystyle -e}
Ω
{\ displaystyle \ Omega}
Ω
=
e
-
e
-
e
⋅
⋅
⋅
{\ displaystyle \ Omega = e ^ {- e ^ {- e ^ {\ cdot ^ {\ cdot ^ {\ cdot}}}}}}
In slightly different words, this means that the limit of the through
Ω
{\ displaystyle \ Omega}
Ω
n
+
1
=
e
-
Ω
n
{\ displaystyle \ Omega _ {n + 1} = e ^ {- \ Omega _ {n}}}
is a recursively defined sequence with any start value .
Ω
0
{\ displaystyle \ Omega _ {0}}
Ω
=
e
-
1
↑↑
∞
: =
lim
n
→
∞
e
-
1
↑↑
n
{\ displaystyle \ Omega = e ^ {- 1} \ uparrow \ uparrow \ infty: = \ lim _ {n \ to \ infty} e ^ {- 1} \ uparrow \ uparrow n}
the relationship
comes in the so-called arrow notation
Ω
=
(
1
/
e
)
(
1
/
e
)
(
1
/
e
)
⋅
⋅
⋅
{\ displaystyle \ Omega = (1 / e) ^ {(1 / e) ^ {(1 / e) ^ {\ cdot ^ {\ cdot ^ {\ cdot}}}}}}
to express that the value of this infinite power tower is with nothing but the same bases , which in turn is only a rather trivial reformulation of the two above properties.
Ω
{\ displaystyle \ Omega}
1
/
e
{\ displaystyle 1 / e}
∫
-
∞
∞
d
t
(
e
t
-
t
)
2
+
π
2
=
1
1
+
Ω
=
0.638
103743365110778522407385519
...
{\ displaystyle \ int _ {- \ infty} ^ {\ infty} {\ frac {{\ text {d}} t} {(e ^ {t} -t) ^ {2} + \ pi ^ {2} }} = {\ frac {1} {1+ \ Omega}} = 0 {,} 638103743365110778522407385519 \ dots}
Ω
=
1
π
re
∫
0
π
log
(
e
e
i
t
-
e
-
i
t
e
e
i
t
-
e
i
t
)
d
t
,
{\ displaystyle \ Omega = {\ frac {1} {\ pi}} \ operatorname {Re} \ int _ {0} ^ {\ pi} \ log \ left ({\ frac {e ^ {e ^ {it} } -e ^ {- it}} {e ^ {e ^ {it}} - e ^ {it}}} \ right) \ {\ text {d}} t,}
where the real part of the integral is formed.
re
{\ displaystyle \ operatorname {Re}}
Ω
{\ displaystyle \ Omega}
is a transcendent number .
If it were an algebraic number , it would be transcendent according to the Lindemann-Weierstrass theorem . But that contradicts , so that there must be a transcendent number.
Ω
{\ displaystyle \ Omega}
e
-
Ω
{\ displaystyle e ^ {- \ Omega}}
e
-
Ω
=
Ω
{\ displaystyle e ^ {- \ Omega} = \ Omega}
Ω
{\ displaystyle \ Omega}
Individual evidence
↑ Follow A030178 in OEIS
↑ Follow A115287 in OEIS
↑ István Mező: An integral representation for the principal branch of Lambert the W function. Retrieved November 19, 2018 .
Web links
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">