In mathematics , quasigeodesics (also quasi-geodesics ) occur in differential geometry , metric geometry and geometric group theory. These are curves that are not necessarily the shortest links, but whose length only deviates from the shortest links in a controlled manner.
definition
Let it be a metric space and a (finite or infinite) closed interval. A (not necessarily continuous ) mapping
(
X
,
d
)
{\ displaystyle (X, d)}
I.
⊂
R.
{\ displaystyle I \ subset \ mathbb {R}}
c
:
I.
→
X
{\ displaystyle c \ colon I \ to X}
is a quasigeodesic if there are constants such that for all of them :
λ
,
ϵ
>
0
{\ displaystyle \ lambda, \ epsilon> 0}
s
,
t
∈
I.
{\ displaystyle s, t \ in I}
1
λ
|
s
-
t
|
-
ϵ
≤
d
(
c
(
s
)
,
c
(
t
)
)
≤
λ
|
s
-
t
|
+
ϵ
{\ displaystyle {\ frac {1} {\ lambda}} | st | - \ epsilon \ leq d (c (s), c (t)) \ leq \ lambda | st | + \ epsilon}
.
In other words: is a quasi-isometric embedding .
c
:
I.
→
X
{\ displaystyle c \ colon I \ to X}
Examples
In or more generally in every simply connected Riemann manifold of non-positive sectional curvature , a geodesic is always a quasigeodesic.
R.
n
{\ displaystyle \ mathbb {R} ^ {n}}
The logarithmic spiral is a quasigeodesic because it holds .
c
(
t
)
=
(
t
cos
(
ln
(
1
+
t
)
)
,
t
sin
(
ln
(
1
+
t
)
)
)
{\ displaystyle c (t) = (t \ cos (\ ln (1 + t)), t \ sin (\ ln (1 + t)))}
|
s
-
t
|
≤
d
(
c
(
s
)
,
c
(
t
)
)
≤
(
2
π
+
1
)
|
s
-
t
|
{\ displaystyle | st | \ leq d (c (s), c (t)) \ leq (2 \ pi +1) | st |}
Controlled disturbances of a quasigeodesics are again quasigeodesics, with a possibly different constant .
ϵ
{\ displaystyle \ epsilon}
More precisely: If there is a quasigeodesic and holds for one constant and all , then it is a quasigeodesic.
c
{\ displaystyle c}
d
(
c
(
t
)
,
c
′
(
t
)
)
<
K
{\ displaystyle d (c (t), c ^ {\ prime} (t)) <K}
K
{\ displaystyle K}
t
∈
I.
{\ displaystyle t \ in I}
c
′
{\ displaystyle c ^ {\ prime}}
If there is a quasi-geodesic and a quasi-isometric embedding, then is a quasigeodesic.
c
:
I.
→
X
{\ displaystyle c \ colon I \ to X}
f
:
X
→
Y
{\ displaystyle f \ colon X \ to Y}
f
∘
c
{\ displaystyle f \ circ c}
Morse lemma
Let it be a Gromov hyperbolic space, for example a simply connected Riemannian manifold with negative section curvature . Then every quasigeodesic has a finite Hausdorff distance from the (unique) geodesic through and .
(
X
,
d
)
{\ displaystyle (X, d)}
c
:
[
a
,
b
]
→
X
{\ displaystyle c \ colon \ left [a, b \ right] \ to X}
c
′
{\ displaystyle c ^ {\ prime}}
c
(
a
)
{\ displaystyle c (a)}
c
(
b
)
{\ displaystyle c (b)}
More precisely: There is one for all of them , so that every quasigeodesic in a hyperbolic space lies at a distance from a geodesic.
λ
,
ϵ
,
δ
{\ displaystyle \ lambda, \ epsilon, \ delta}
R.
(
λ
,
ϵ
,
δ
)
{\ displaystyle R (\ lambda, \ epsilon, \ delta)}
(
λ
,
ϵ
)
{\ displaystyle (\ lambda, \ epsilon)}
δ
{\ displaystyle \ delta}
<
R.
{\ displaystyle <R}
In particular, if -hyperbolic and continuous and rectifiable , then applies to all
X
{\ displaystyle X}
δ
{\ displaystyle \ delta}
c
{\ displaystyle c}
x
∈
i
m
(
c
′
)
{\ displaystyle x \ in im (c ^ {\ prime})}
d
(
x
,
i
m
(
c
)
)
≤
δ
|
log
2
l
(
c
)
|
+
1
{\ displaystyle d (x, im (c)) \ leq \ delta | \ log _ {2} l (c) | +1}
,
where denotes the length of .
l
(
c
)
{\ displaystyle l (c)}
c
{\ displaystyle c}
The analogous statement for CAT (0) -spaces or manifolds of non-positive intersection curvature does not apply. A counterexample is the logarithmic spiral im .
R.
2
{\ displaystyle \ mathbb {R} ^ {2}}
literature
Ghys, Étienne; de la Harpe, Pierre: Quasi-isométries et quasi-géodésiques. Sur les groupes hyperboliques d'après Mikhael Gromov (Bern, 1988), 79-102, Progr. Math., 83, Birkhauser Boston, Boston, MA, 1990.
Web links
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">