In mathematics  , the rearrangement inequality is  a statement about the change in the value of formal scalar products  due to rearrangement. 
Given are two n- tuples of  real numbers and with
  
    
      
        x 
        = 
        ( 
        
          x 
          
            1 
           
         
        , 
        ... 
        , 
        
          x 
          
            n 
           
         
        ) 
       
     
    {\ displaystyle x = (x_ {1}, \ dots, x_ {n})} 
   
 
  
    
      
        y 
        = 
        ( 
        
          y 
          
            1 
           
         
        , 
        ... 
        , 
        
          y 
          
            n 
           
         
        ) 
       
     
    {\ displaystyle y = (y_ {1}, \ dots, y_ {n})} 
   
 
  
    
      
        
          x 
          
            1 
           
         
        ≤ 
        ⋯ 
        ≤ 
        
          x 
          
            n 
           
         
        
          
            and 
           
         
        
          y 
          
            1 
           
         
        ≤ 
        ⋯ 
        ≤ 
        
          y 
          
            n 
           
         
       
     
    {\ displaystyle x_ {1} \ leq \ cdots \ leq x_ {n} \ quad {\ mbox {and}} \ quad y_ {1} \ leq \ cdots \ leq y_ {n}} 
   
  The tuple
  
    
      
        
          x 
          
            σ 
           
         
        = 
        
          ( 
          
            
              x 
              
                σ 
                ( 
                1 
                ) 
               
             
            , 
            ... 
            , 
            
              x 
              
                σ 
                ( 
                n 
                ) 
               
             
           
          ) 
         
       
     
    {\ displaystyle x _ {\ sigma} = \ left (x _ {\ sigma (1)}, \ dots, x _ {\ sigma (n)} \ right)} 
   
 be a permutation of  the tuple . If one now regards the n- tuples  as  vectors  and considers their  standard scalar  product, the  rearrangement inequality  says that
  
    
      
        x 
       
     
    {\ displaystyle x} 
   
  
  
    
      
        
          x 
          
            1 
           
         
        
          y 
          
            1 
           
         
        + 
        ⋯ 
        + 
        
          x 
          
            n 
           
         
        
          y 
          
            n 
           
         
        ≥ 
        
          x 
          
            σ 
            ( 
            1 
            ) 
           
         
        
          y 
          
            1 
           
         
        + 
        ⋯ 
        + 
        
          x 
          
            σ 
            ( 
            n 
            ) 
           
         
        
          y 
          
            n 
           
         
        ≥ 
        
          x 
          
            n 
           
         
        
          y 
          
            1 
           
         
        + 
        ⋯ 
        + 
        
          x 
          
            1 
           
         
        
          y 
          
            n 
           
         
        . 
       
     
    {\ displaystyle x_ {1} y_ {1} + \ cdots + x_ {n} y_ {n} \ geq x _ {\ sigma (1)} y_ {1} + \ cdots + x _ {\ sigma (n)} y_ {n} \ geq x_ {n} y_ {1} + \ cdots + x_ {1} y_ {n}.} 
   
 The scalar product is therefore maximal if the elements of the n- tuples  are ordered in the same way, and minimal if they are ordered in opposite directions.
Note that, unlike many other inequalities, no preconditions for the signs  of and are necessary.
  
    
      
        
          x 
          
            i 
           
         
       
     
    {\ displaystyle x_ {i}} 
   
 
  
    
      
        
          y 
          
            i 
           
         
       
     
    {\ displaystyle y_ {i}} 
   
 
proofs Proof by means of swaps The proof idea is the smallest , which met, and that with regard to. Then so are and , therefore, and , so
  
    
      
        i 
       
     
    {\ displaystyle i} 
   
 
  
    
      
        σ 
        ( 
        i 
        ) 
        ≠ 
        i 
       
     
    {\ displaystyle \ sigma (i) \ neq i} 
   
 
  
    
      
        j 
       
     
    {\ displaystyle j} 
   
 
  
    
      
        i 
        = 
        σ 
        ( 
        j 
        ) 
       
     
    {\ displaystyle i = \ sigma (j)} 
   
 
  
    
      
        σ 
        ( 
        i 
        ) 
        > 
        i 
       
     
    {\ displaystyle \ sigma (i)> i} 
   
 
  
    
      
        j 
        > 
        i 
       
     
    {\ displaystyle j> i} 
   
 
  
    
      
        
          x 
          
            σ 
            ( 
            j 
            ) 
           
         
        ≤ 
        
          x 
          
            σ 
            ( 
            i 
            ) 
           
         
       
     
    {\ displaystyle x _ {\ sigma (j)} \ leq x _ {\ sigma (i)}} 
   
 
  
    
      
        
          y 
          
            i 
           
         
        ≤ 
        
          y 
          
            j 
           
         
       
     
    {\ displaystyle y_ {i} \ leq y_ {j}} 
   
 
  
    
      
        ( 
        
          x 
          
            σ 
            ( 
            i 
            ) 
           
         
        - 
        
          x 
          
            σ 
            ( 
            j 
            ) 
           
         
        ) 
        ( 
        
          y 
          
            i 
           
         
        - 
        
          y 
          
            j 
           
         
        ) 
        ≤ 
        0 
       
     
    {\ displaystyle (x _ {\ sigma (i)} - x _ {\ sigma (j)}) (y_ {i} -y_ {j}) \ leq 0} 
   
 and therefore
  
    
      
        
          x 
          
            σ 
            ( 
            i 
            ) 
           
         
        
          y 
          
            i 
           
         
        + 
        
          x 
          
            σ 
            ( 
            j 
            ) 
           
         
        
          y 
          
            j 
           
         
        ≤ 
        
          x 
          
            σ 
            ( 
            j 
            ) 
           
         
        
          y 
          
            i 
           
         
        + 
        
          x 
          
            σ 
            ( 
            i 
            ) 
           
         
        
          y 
          
            j 
           
         
        = 
        
          x 
          
            i 
           
         
        
          y 
          
            i 
           
         
        + 
        
          x 
          
            σ 
            ( 
            i 
            ) 
           
         
        
          y 
          
            j 
           
         
        . 
       
     
    {\ displaystyle x _ {\ sigma (i)} y_ {i} + x _ {\ sigma (j)} y_ {j} \ leq x _ {\ sigma (j)} y_ {i} + x _ {\ sigma (i) } y_ {j} = x_ {i} y_ {i} + x _ {\ sigma (i)} y_ {j}.} 
   
 As long as there is a with , the sum can be increased for tuples of the same order.
  
    
      
        i 
       
     
    {\ displaystyle i} 
   
 
  
    
      
        σ 
        ( 
        i 
        ) 
        ≠ 
        i 
       
     
    {\ displaystyle \ sigma (i) \ neq i} 
   
 
Analog one shows that the sum for opposite parent tuple can decrease as long as with exist.
  
    
      
        i 
       
     
    {\ displaystyle i} 
   
 
  
    
      
        σ 
        ( 
        i 
        ) 
        ≠ 
        i 
       
     
    {\ displaystyle \ sigma (i) \ neq i} 
   
 
Proof by induction This proof can also be carried out in more detail with complete induction  . There are only two permutations for the beginning of induction , so it has to be shown that
  
    
      
        n 
        = 
        2 
       
     
    {\ displaystyle n = 2} 
   
 
  
    
      
        
          x 
          
            2 
           
         
        
          y 
          
            1 
           
         
        + 
        
          x 
          
            1 
           
         
        
          y 
          
            2 
           
         
        ≤ 
        
          x 
          
            1 
           
         
        
          y 
          
            1 
           
         
        + 
        
          x 
          
            2 
           
         
        
          y 
          
            2 
           
         
        . 
       
     
    {\ displaystyle x_ {2} y_ {1} + x_ {1} y_ {2} \ leq x_ {1} y_ {1} + x_ {2} y_ {2}.} 
   
 But that is equivalent  to 
  
    
      
        0 
        ≤ 
        ( 
        
          y 
          
            1 
           
         
        - 
        
          y 
          
            2 
           
         
        ) 
        ( 
        
          x 
          
            1 
           
         
        - 
        
          x 
          
            2 
           
         
        ) 
        , 
       
     
    {\ displaystyle 0 \ leq (y_ {1} -y_ {2}) (x_ {1} -x_ {2}),} 
   
 thus a prerequisite that both tuples are ordered in the same way.
In the induction step, let the index be The case is easy to handle, so let then hold
  
    
      
        j 
       
     
    {\ displaystyle j} 
   
 
  
    
      
        σ 
        ( 
        j 
        ) 
        = 
        n 
        + 
        1. 
       
     
    {\ displaystyle \ sigma (j) = n + 1.} 
   
 
  
    
      
        j 
        = 
        n 
        + 
        1 
       
     
    {\ displaystyle j = n + 1} 
   
 
  
    
      
        j 
        ≠ 
        n 
        + 
        1. 
       
     
    {\ displaystyle j \ neq n + 1.} 
   
 
  
    
      
        
          ∑ 
          
            i 
            = 
            1 
           
          
            n 
            + 
            1 
           
         
        
          x 
          
            σ 
            ( 
            i 
            ) 
           
         
        
          y 
          
            i 
           
         
        = 
        
          ∑ 
          
            i 
            ∉ 
            { 
            j 
            , 
            n 
            + 
            1 
            } 
           
         
        
          x 
          
            σ 
            ( 
            i 
            ) 
           
         
        
          y 
          
            i 
           
         
        + 
        
          x 
          
            σ 
            ( 
            j 
            ) 
           
         
        
          y 
          
            j 
           
         
        + 
        
          x 
          
            σ 
            ( 
            n 
            + 
            1 
            ) 
           
         
        
          y 
          
            n 
            + 
            1 
           
         
        = 
        
          ∑ 
          
            i 
            ∉ 
            { 
            j 
            , 
            n 
            + 
            1 
            } 
           
         
        
          x 
          
            σ 
            ( 
            i 
            ) 
           
         
        
          y 
          
            i 
           
         
        + 
        
          x 
          
            n 
            + 
            1 
           
         
        
          y 
          
            j 
           
         
        + 
        
          x 
          
            σ 
            ( 
            n 
            + 
            1 
            ) 
           
         
        
          y 
          
            n 
            + 
            1 
           
         
        . 
       
     
    {\ displaystyle \ sum _ {i = 1} ^ {n + 1} x _ {\ sigma (i)} y_ {i} = \ sum _ {i \ not \ in \ {j, n + 1 \}} x_ {\ sigma (i)} y_ {i} + x _ {\ sigma (j)} y_ {j} + x _ {\ sigma (n + 1)} y_ {n + 1} = \ sum _ {i \ not \ in \ {j, n + 1 \}} x _ {\ sigma (i)} y_ {i} + x_ {n + 1} y_ {j} + x _ {\ sigma (n + 1)} y_ {n + 1 }.} 
   
 Now we apply the case proven in the beginning of induction and get
  
    
      
        n 
        = 
        2 
       
     
    {\ displaystyle n = 2} 
   
 
  
    
      
        
          ∑ 
          
            i 
            ∉ 
            { 
            j 
            , 
            n 
            + 
            1 
            } 
           
         
        
          x 
          
            σ 
            ( 
            i 
            ) 
           
         
        
          y 
          
            i 
           
         
        + 
        
          x 
          
            n 
            + 
            1 
           
         
        
          y 
          
            j 
           
         
        + 
        
          x 
          
            σ 
            ( 
            n 
            + 
            1 
            ) 
           
         
        
          y 
          
            n 
            + 
            1 
           
         
        ≤ 
        
          ∑ 
          
            i 
            ∉ 
            { 
            j 
            , 
            n 
            + 
            1 
            } 
           
         
        
          x 
          
            σ 
            ( 
            i 
            ) 
           
         
        
          y 
          
            i 
           
         
        + 
        
          x 
          
            σ 
            ( 
            n 
            + 
            1 
            ) 
           
         
        
          y 
          
            j 
           
         
        + 
        
          x 
          
            n 
            + 
            1 
           
         
        
          y 
          
            n 
            + 
            1 
           
         
        . 
       
     
    {\ displaystyle \ sum _ {i \ not \ in \ {j, n + 1 \}} x _ {\ sigma (i)} y_ {i} + x_ {n + 1} y_ {j} + x _ {\ sigma (n + 1)} y_ {n + 1} \ leq \ sum _ {i \ not \ in \ {j, n + 1 \}} x _ {\ sigma (i)} y_ {i} + x _ {\ sigma (n + 1)} y_ {j} + x_ {n + 1} y_ {n + 1}.} 
   
 Define now for the permutation
  
    
      
        i 
        = 
        1 
        , 
        ... 
        , 
        n 
       
     
    {\ displaystyle i = 1, \ dots, n} 
   
 
  
    
      
        τ 
        ( 
        i 
        ) 
        = 
        
          
            { 
            
              
                
                  σ 
                  ( 
                  n 
                  + 
                  1 
                  ) 
                  
                    
                      if 
                     
                   
                  i 
                  = 
                  j 
                 
               
              
                
                  σ 
                  ( 
                  i 
                  ) 
                  
                    
                      otherwise 
                     
                   
                 
               
             
             
         
       
     
    {\ displaystyle \ tau (i) = {\ begin {cases} \ sigma (n + 1) \ qquad {\ textrm {if}} \ quad i = j \\\ sigma (i) \ qquad {\ textrm {otherwise }} \ end {cases}}} 
   
 so follows from the induction hypothesis
  
    
      
        
          ∑ 
          
            i 
            ∉ 
            { 
            j 
            , 
            n 
            + 
            1 
            } 
           
         
        
          x 
          
            σ 
            ( 
            i 
            ) 
           
         
        
          y 
          
            i 
           
         
        + 
        
          x 
          
            σ 
            ( 
            n 
            + 
            1 
            ) 
           
         
        
          y 
          
            j 
           
         
        + 
        
          x 
          
            n 
            + 
            1 
           
         
        
          y 
          
            n 
            + 
            1 
           
         
        = 
        
          ∑ 
          
            i 
            ∉ 
            { 
            j 
            , 
            n 
            + 
            1 
            } 
           
         
        
          x 
          
            τ 
            ( 
            i 
            ) 
           
         
        
          y 
          
            i 
           
         
        + 
        
          x 
          
            τ 
            ( 
            j 
            ) 
           
         
        
          y 
          
            j 
           
         
        + 
        
          x 
          
            n 
            + 
            1 
           
         
        
          y 
          
            n 
            + 
            1 
           
         
        = 
        
          ∑ 
          
            i 
            = 
            1 
           
          
            n 
           
         
        
          x 
          
            τ 
            ( 
            i 
            ) 
           
         
        
          y 
          
            i 
           
         
        + 
        
          x 
          
            n 
            + 
            1 
           
         
        
          y 
          
            n 
            + 
            1 
           
         
        ≤ 
        
          ∑ 
          
            i 
            = 
            1 
           
          
            n 
           
         
        
          x 
          
            i 
           
         
        
          y 
          
            i 
           
         
        + 
        
          x 
          
            n 
            + 
            1 
           
         
        
          y 
          
            n 
            + 
            1 
           
         
        , 
       
     
    {\ displaystyle \ sum _ {i \ not \ in \ {j, n + 1 \}} x _ {\ sigma (i)} y_ {i} + x _ {\ sigma (n + 1)} y_ {j} + x_ {n + 1} y_ {n + 1} = \ sum _ {i \ not \ in \ {j, n + 1 \}} x _ {\ tau (i)} y_ {i} + x _ {\ tau ( j)} y_ {j} + x_ {n + 1} y_ {n + 1} = \ sum _ {i = 1} ^ {n} x _ {\ tau (i)} y_ {i} + x_ {n + 1} y_ {n + 1} \ leq \ sum _ {i = 1} ^ {n} x_ {i} y_ {i} + x_ {n + 1} y_ {n + 1},} 
   
 thus exactly the claim for the maximum of the scalar product.
The proof for the minimum of the scalar product is analogous.
Applications Many known inequalities can be proven from the rearrangement inequality, for example the inequality of the arithmetic and geometric mean  , Cauchy-Schwarz inequality,  and the Chebyshev sum inequality  .
literature  
<img src="https://de.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">